These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20385143)

  • 41. Identification of the elongation factor Tu binding site on 70S E. coli ribosomes by chemical crosslinking.
    Nag B; Johnson AE; Traut RR
    Indian J Biochem Biophys; 1995 Dec; 32(6):343-50. PubMed ID: 8714202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G.
    Zavialov AV; Hauryliuk VV; Ehrenberg M
    Mol Cell; 2005 Jun; 18(6):675-86. PubMed ID: 15949442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elongation factor G-induced structural change in helix 34 of 16S rRNA related to translocation on the ribosome.
    Matassova AB; Rodnina MV; Wintermeyer W
    RNA; 2001 Dec; 7(12):1879-85. PubMed ID: 11780642
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA.
    Moazed D; Robertson JM; Noller HF
    Nature; 1988 Jul; 334(6180):362-4. PubMed ID: 2455872
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deacylated tRNA is released from the E site upon A site occupation but before GTP is hydrolyzed by EF-Tu.
    Dinos G; Kalpaxis DL; Wilson DN; Nierhaus KH
    Nucleic Acids Res; 2005; 33(16):5291-6. PubMed ID: 16166657
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Mutational analysis of the functional role of the loop region in the elongation factor G fourth domain in the ribosomal translocation].
    Kolesnikov AV; Gudkov AT
    Mol Biol (Mosk); 2003; 37(4):719-25. PubMed ID: 12942646
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Translation initiation factor 3 regulates switching between different modes of ribosomal subunit joining.
    MacDougall DD; Gonzalez RL
    J Mol Biol; 2015 May; 427(9):1801-18. PubMed ID: 25308340
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The translation initiation functions of IF2: targets for thiostrepton inhibition.
    Brandi L; Marzi S; Fabbretti A; Fleischer C; Hill WE; Gualerzi CO; Stephen Lodmell J
    J Mol Biol; 2004 Jan; 335(4):881-94. PubMed ID: 14698286
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits.
    Pavlov MY; Zorzet A; Andersson DI; Ehrenberg M
    EMBO J; 2011 Jan; 30(2):289-301. PubMed ID: 21151095
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of elongation factor Tu with the ribosome. A study using the antibiotic kirromycin.
    Sander G; Ivell R; Crechet JB; Parmeggiani A
    Biochemistry; 1980 Mar; 19(5):865-70. PubMed ID: 6101963
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation and characterization of an inhibitor of ribosome-dependent GTP hydrolysis by elongation factor G.
    Voigt J; Nagel K
    Eur J Biochem; 1990 Dec; 194(2):579-85. PubMed ID: 2269283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The hinge region of Escherichia coli ribosomal protein L7/L12 is required for factor binding and GTP hydrolysis.
    Dey D; Oleinikov AV; Traut RR
    Biochimie; 1995; 77(12):925-30. PubMed ID: 8834773
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GTP hydrolysis by IF2 guides progression of the ribosome into elongation.
    Marshall RA; Aitken CE; Puglisi JD
    Mol Cell; 2009 Jul; 35(1):37-47. PubMed ID: 19595714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A model for the interaction of the G3-subdomain of Geobacillus stearothermophilus IF2 with the 30S ribosomal subunit.
    Dongre R; Folkers GE; Gualerzi CO; Boelens R; Wienk H
    Protein Sci; 2016 Sep; 25(9):1722-33. PubMed ID: 27364543
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A bacterial elongation factor G homologue exclusively functions in ribosome recycling in the spirochaete Borrelia burgdorferi.
    Suematsu T; Yokobori S; Morita H; Yoshinari S; Ueda T; Kita K; Takeuchi N; Watanabe Y
    Mol Microbiol; 2010 Mar; 75(6):1445-54. PubMed ID: 20132446
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Late events of translation initiation in bacteria: a kinetic analysis.
    Tomsic J; Vitali LA; Daviter T; Savelsbergh A; Spurio R; Striebeck P; Wintermeyer W; Rodnina MV; Gualerzi CO
    EMBO J; 2000 May; 19(9):2127-36. PubMed ID: 10790378
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stabilization by the 30S ribosomal subunit of the interaction of 50S subunits with elongation factor G and guanine nucleotide.
    Marsh RC; Parmeggiani A
    Biochemistry; 1977 Apr; 16(7):1278-83. PubMed ID: 321016
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Translation initiation without IF2-dependent GTP hydrolysis.
    Fabbretti A; Brandi L; Milón P; Spurio R; Pon CL; Gualerzi CO
    Nucleic Acids Res; 2012 Sep; 40(16):7946-55. PubMed ID: 22723375
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Early divergence of translation initiation and elongation factors.
    Fer E; McGrath KM; Guy L; Hockenberry AJ; Kaçar B
    Protein Sci; 2022 Sep; 31(9):e4393. PubMed ID: 36250475
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ribosomal localization of translation initiation factor IF2.
    Marzi S; Knight W; Brandi L; Caserta E; Soboleva N; Hill WE; Gualerzi CO; Lodmell JS
    RNA; 2003 Aug; 9(8):958-69. PubMed ID: 12869707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.