BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20385262)

  • 1. alpha-Glucosidase inhibitory activities of 10-hydroxy-8(E)-octadecenoic acid: an intermediate of bioconversion of oleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid.
    Paul S; Hou CT; Kang SC
    N Biotechnol; 2010 Sep; 27(4):419-23. PubMed ID: 20385262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of 7, 10-dihydroxy-8(E)-octadecenoic acid from triolein via lipase induction by Pseudomonas aeruginosa PR3.
    Chang IA; Kim IH; Kang SC; Hou CT; Kim HR
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):301-6. PubMed ID: 17082930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and identification of a novel compound, 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.
    Bae JH; Kim DS; Suh MJ; Oh SR; Lee IJ; Kang SC; Hou CT; Kim HR
    Appl Microbiol Biotechnol; 2007 May; 75(2):435-40. PubMed ID: 17262210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of 7,10-dihydroxy-8(E)-octadecenoic acid from olive oil by Pseudomonas aeruginosa PR3.
    Suh MJ; Baek KY; Kim BS; Hou CT; Kim HR
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1721-7. PubMed ID: 21153811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental optimization for bioconversion of triolein into 7,10-dihydroxy-8(E)-octadecenoic acid by Pseudomonas aeruginosa PR3.
    Chang IA; Bae JH; Suh MJ; Kim IH; Hou CT; Kim HR
    Appl Microbiol Biotechnol; 2008 Mar; 78(4):581-6. PubMed ID: 18210104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two unsaturated fatty acids with potent α-glucosidase inhibitory activity purified from the body wall of sea cucumber (Stichopus japonicus).
    Nguyen TH; Um BH; Kim SM
    J Food Sci; 2011; 76(9):H208-14. PubMed ID: 22416705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibacterial activity of a 7,10-dihydroxy-8(E)-octadecenoic acid against plant pathogenic bacteria.
    Sohn HR; Bae JH; Hou CT; Kim HR
    Enzyme Microb Technol; 2013 Aug; 53(3):152-3. PubMed ID: 23830454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Alpha-glucosidase inhibitors from Rubia cordifolia].
    Kang W; Zhang L; Song Y
    Zhongguo Zhong Yao Za Zhi; 2009 May; 34(9):1104-7. PubMed ID: 19685744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Alpha-glucosidase inhibitors from Luculia pinciana].
    Kang W; Zhang L; Song Y
    Zhongguo Zhong Yao Za Zhi; 2009 Feb; 34(4):406-9. PubMed ID: 19459300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha-glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats.
    Shinde J; Taldone T; Barletta M; Kunaparaju N; Hu B; Kumar S; Placido J; Zito SW
    Carbohydr Res; 2008 May; 343(7):1278-81. PubMed ID: 18374320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thielavins A, J and K: α-Glucosidase inhibitors from MEXU 27095, an endophytic fungus from Hintonia latiflora.
    Rivera-Chávez J; González-Andrade M; González Mdel C; Glenn AE; Mata R
    Phytochemistry; 2013 Oct; 94():198-205. PubMed ID: 23809634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of 10-hydroxy-8(E)-octadecenoic acid from oleic acid conversion by strains of Pseudomonas aeruginosa.
    Kuo TM; Huang JK; Labeda D; Wen L; Knothe G
    Curr Microbiol; 2008 Nov; 57(5):437-41. PubMed ID: 18704576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New bioactive fatty acids.
    Hou CT
    Asia Pac J Clin Nutr; 2008; 17 Suppl 1():192-5. PubMed ID: 18296335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triterpene acids isolated from Lagerstroemia speciosa leaves as alpha-glucosidase inhibitors.
    Hou W; Li Y; Zhang Q; Wei X; Peng A; Chen L; Wei Y
    Phytother Res; 2009 May; 23(5):614-8. PubMed ID: 19107840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of alpha-glucosidase.
    Li YQ; Zhou FC; Gao F; Bian JS; Shan F
    J Agric Food Chem; 2009 Dec; 57(24):11463-8. PubMed ID: 19938837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of oleic acid, ricinoleic acid and linoleic acid conversions among Pseudomonas aeruginosa strains.
    Kuo TM; Nakamura LK
    Curr Microbiol; 2004 Oct; 49(4):261-6. PubMed ID: 15386114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of a lipoxygenase from Pseudomonas 42A2 responsible for the biotransformation of oleic acid into ( S )-( E )-10-hydroxy-8-octadecenoic acid.
    Busquets M; Deroncelé V; Vidal-Mas J; Rodríguez E; Guerrero A; Manresa A
    Antonie Van Leeuwenhoek; 2004 Feb; 85(2):129-39. PubMed ID: 15028873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory potential of Grifola frondosa bioactive fractions on α-amylase and α-glucosidase for management of hyperglycemia.
    Su CH; Lu TM; Lai MN; Ng LT
    Biotechnol Appl Biochem; 2013; 60(4):446-52. PubMed ID: 24033596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effect of CuSO₄ on α-glucosidase activity in ddY mice.
    Yoshikawa Y; Hirata R; Yasui H; Hattori M; Sakurai H
    Metallomics; 2010 Jan; 2(1):67-73. PubMed ID: 21072376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of polyhydroxybenzophenones as α-glucosidase inhibitors.
    Hu X; Xiao Y; Wu J; Ma L
    Arch Pharm (Weinheim); 2011 Feb; 344(2):71-7. PubMed ID: 21290422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.