BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20385481)

  • 1. Energy recovery from waste incineration: assessing the importance of district heating networks.
    Fruergaard T; Christensen TH; Astrup T
    Waste Manag; 2010 Jul; 30(7):1264-72. PubMed ID: 20385481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.
    Münster M; Meibom P
    Waste Manag; 2010 Dec; 30(12):2510-9. PubMed ID: 20471819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.
    Grosso M; Motta A; Rigamonti L
    Waste Manag; 2010 Jul; 30(7):1238-43. PubMed ID: 20347289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.
    Udomsri S; Martin AR; Fransson TH
    Waste Manag; 2010 Jul; 30(7):1414-22. PubMed ID: 20207531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demand for waste as fuel in the swedish district heating sector: a production function approach.
    Furtenback O
    Waste Manag; 2009 Jan; 29(1):285-92. PubMed ID: 18442900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO₂ emission factors for waste incineration: Influence from source separation of recyclable materials.
    Larsen AW; Astrup T
    Waste Manag; 2011 Jul; 31(7):1597-605. PubMed ID: 21450451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy and greenhouse gas balances for a solid waste incineration plant: a case study.
    Brinck K; Poulsen TG; Skov H
    Waste Manag Res; 2011 Oct; 29(10 Suppl):13-9. PubMed ID: 21746759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.
    Panepinto D; Genon G
    Waste Manag Res; 2014 Jul; 32(7):670-80. PubMed ID: 24942837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of the waste hierarchy--a Danish case study on waste paper.
    Schmidt JH; Holm P; Merrild A; Christensen P
    Waste Manag; 2007; 27(11):1519-30. PubMed ID: 17112716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.
    Astrup T; Møller J; Fruergaard T
    Waste Manag Res; 2009 Nov; 27(8):789-99. PubMed ID: 19748939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LCA to choose among alternative design solutions: the case study of a new Italian incineration line.
    Scipioni A; Mazzi A; Niero M; Boatto T
    Waste Manag; 2009 Sep; 29(9):2462-74. PubMed ID: 19450963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul.
    Yi S; Yoo KY; Hanaki K
    Waste Manag; 2011 Mar; 31(3):595-602. PubMed ID: 20933381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T; Astrup T
    Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Waste-to-Energy technologies by applying energy system analysis.
    Münster M; Lund H
    Waste Manag; 2010 Jul; 30(7):1251-63. PubMed ID: 19700298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of waste incineration in Denmark and Italy using two LCA models.
    Turconi R; Butera S; Boldrin A; Grosso M; Rigamonti L; Astrup T
    Waste Manag Res; 2011 Oct; 29(10 Suppl):78-90. PubMed ID: 21930527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
    Vanneste J; Van Gerven T; Vander Putten E; Van der Bruggen B; Helsen L
    Sci Total Environ; 2011 Sep; 409(19):3595-602. PubMed ID: 21719072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-enriched air for co-incineration of organic sludges with municipal solid waste: a pilot plant experiment.
    Chin S; Jurng J; Lee JH; Hur JH
    Waste Manag; 2008 Dec; 28(12):2684-9. PubMed ID: 18325752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of heat recovery for district heating on waste incineration health impact: a simulation study in Northern Italy.
    Cordioli M; Vincenzi S; De Leo GA
    Sci Total Environ; 2013 Feb; 444():369-80. PubMed ID: 23280295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.
    Tabata T; Tsai P
    Waste Manag Res; 2016 Feb; 34(2):148-55. PubMed ID: 26628053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.