BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 20385585)

  • 1. Constitutive fusion of ubiquitin to PCNA provides DNA damage tolerance independent of translesion polymerase activities.
    Pastushok L; Hanna M; Xiao W
    Nucleic Acids Res; 2010 Aug; 38(15):5047-58. PubMed ID: 20385585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-damage tolerance mediated by PCNA*Ub fusions in human cells is dependent on Rev1 but not Polη.
    Qin Z; Lu M; Xu X; Hanna M; Shiomi N; Xiao W
    Nucleic Acids Res; 2013 Aug; 41(15):7356-69. PubMed ID: 23761444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells.
    Hendel A; Krijger PH; Diamant N; Goren Z; Langerak P; Kim J; Reissner T; Lee KY; Geacintov NE; Carell T; Myung K; Tateishi S; D'Andrea A; Jacobs H; Livneh Z
    PLoS Genet; 2011 Sep; 7(9):e1002262. PubMed ID: 21931560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the ubiquitin binding UBZ motif of DNA polymerase eta do not impair its function in translesion synthesis during replication.
    Acharya N; Brahma A; Haracska L; Prakash L; Prakash S
    Mol Cell Biol; 2007 Oct; 27(20):7266-72. PubMed ID: 17709386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetic study based on PCNA-ubiquitin fusions reveals no requirement for PCNA polyubiquitylation in DNA damage tolerance.
    Gervai JZ; Gálicza J; Szeltner Z; Zámborszky J; Szüts D
    DNA Repair (Amst); 2017 Jun; 54():46-54. PubMed ID: 28458162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis.
    Haracska L; Unk I; Prakash L; Prakash S
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6477-82. PubMed ID: 16611731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-activatable Ub-PCNA probes reveal new structural features of the Saccharomyces cerevisiae Polη/PCNA complex.
    Shen S; Davidson GA; Yang K; Zhuang Z
    Nucleic Acids Res; 2021 Sep; 49(16):9374-9388. PubMed ID: 34390346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis.
    Acharya N; Yoon JH; Gali H; Unk I; Haracska L; Johnson RE; Hurwitz J; Prakash L; Prakash S
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17724-9. PubMed ID: 19001268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae.
    Haracska L; Torres-Ramos CA; Johnson RE; Prakash S; Prakash L
    Mol Cell Biol; 2004 May; 24(10):4267-74. PubMed ID: 15121847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sgs1 helicase is required for efficient PCNA monoubiquitination and translesion DNA synthesis in Saccharomyces cerevisiae.
    Li F; Ball LG; Fan L; Hanna M; Xiao W
    Curr Genet; 2018 Apr; 64(2):459-468. PubMed ID: 28918480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain.
    Pustovalova Y; Maciejewski MW; Korzhnev DM
    J Mol Biol; 2013 Sep; 425(17):3091-105. PubMed ID: 23747975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCNA trimer instability inhibits translesion synthesis by DNA polymerase η and by DNA polymerase δ.
    Dieckman LM; Washington MT
    DNA Repair (Amst); 2013 May; 12(5):367-76. PubMed ID: 23506842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals TransLesion Synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination.
    Chen CC; Motegi A; Hasegawa Y; Myung K; Kolodner R; D'Andrea A
    DNA Repair (Amst); 2006 Dec; 5(12):1475-88. PubMed ID: 16990054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error-free DNA-damage tolerance in Saccharomyces cerevisiae.
    Xu X; Blackwell S; Lin A; Li F; Qin Z; Xiao W
    Mutat Res Rev Mutat Res; 2015; 764():43-50. PubMed ID: 26041265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of DNA damage tolerance in mammalian cells by post-translational modifications of PCNA.
    Kanao R; Masutani C
    Mutat Res; 2017 Oct; 803-805():82-88. PubMed ID: 28666590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relevance of simultaneous mono-ubiquitinations of multiple units of PCNA homo-trimers in DNA damage tolerance.
    Kanao R; Masuda Y; Deguchi S; Yumoto-Sugimoto M; Hanaoka F; Masutani C
    PLoS One; 2015; 10(2):e0118775. PubMed ID: 25692884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory role of ubiquitin in eukaryotic DNA translesion synthesis.
    Yang K; Weinacht CP; Zhuang Z
    Biochemistry; 2013 May; 52(19):3217-28. PubMed ID: 23634825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5.
    Carlile CM; Pickart CM; Matunis MJ; Cohen RE
    J Biol Chem; 2009 Oct; 284(43):29326-34. PubMed ID: 19706603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA) regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis.
    Sharma NM; Kochenova OV; Shcherbakova PV
    J Biol Chem; 2011 Sep; 286(38):33557-66. PubMed ID: 21799021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen.
    Hishiki A; Hashimoto H; Hanafusa T; Kamei K; Ohashi E; Shimizu T; Ohmori H; Sato M
    J Biol Chem; 2009 Apr; 284(16):10552-60. PubMed ID: 19208623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.