These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Using chemical organization theory for model checking. Kaleta C; Richter S; Dittrich P Bioinformatics; 2009 Aug; 25(15):1915-22. PubMed ID: 19468053 [TBL] [Abstract][Full Text] [Related]
11. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials. Cannon WR; Baker SE Phys Biol; 2017 Aug; 14(5):055003. PubMed ID: 28675379 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics and Kinetics of Glycolytic Reactions. Part I: Kinetic Modeling Based on Irreversible Thermodynamics and Validation by Calorimetry. Vogel K; Greinert T; Reichard M; Held C; Harms H; Maskow T Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33172189 [TBL] [Abstract][Full Text] [Related]
13. Pathway thermodynamics highlights kinetic obstacles in central metabolism. Noor E; Bar-Even A; Flamholz A; Reznik E; Liebermeister W; Milo R PLoS Comput Biol; 2014 Feb; 10(2):e1003483. PubMed ID: 24586134 [TBL] [Abstract][Full Text] [Related]
14. Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws--a promising method for speeding up the kinetic modelling of complex metabolic networks. Bulik S; Grimbs S; Huthmacher C; Selbig J; Holzhütter HG FEBS J; 2009 Jan; 276(2):410-24. PubMed ID: 19137631 [TBL] [Abstract][Full Text] [Related]
15. A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects. Noor E; Flamholz A; Liebermeister W; Bar-Even A; Milo R FEBS Lett; 2013 Sep; 587(17):2772-7. PubMed ID: 23892083 [TBL] [Abstract][Full Text] [Related]
16. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. Dräger A; Kronfeld M; Ziller MJ; Supper J; Planatscher H; Magnus JB; Oldiges M; Kohlbacher O; Zell A BMC Syst Biol; 2009 Jan; 3():5. PubMed ID: 19144170 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamically consistent model calibration in chemical kinetics. Jenkinson G; Goutsias J BMC Syst Biol; 2011 May; 5():64. PubMed ID: 21548948 [TBL] [Abstract][Full Text] [Related]
18. Extraction of elementary rate constants from global network analysis of E. coli central metabolism. Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493 [TBL] [Abstract][Full Text] [Related]
19. Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis-Menten enzyme kinetics. Liu Q; Wang J Proc Natl Acad Sci U S A; 2020 Jan; 117(2):923-930. PubMed ID: 31879351 [TBL] [Abstract][Full Text] [Related]
20. An investigation of the relationships between rate and driving force in simple uncatalysed and enzyme-catalysed reactions with applications of the findings to chemiosmotic reactions. Stoner CD Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):541-52. PubMed ID: 1533514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]