BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 20385753)

  • 21. Cardiolipin Alters
    Lin TY; Gross WS; Auer GK; Weibel DB
    mBio; 2019 Feb; 10(1):. PubMed ID: 30782656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mode of action of the lantibiotic lacticin 3147--a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II.
    Wiedemann I; Böttiger T; Bonelli RR; Wiese A; Hagge SO; Gutsmann T; Seydel U; Deegan L; Hill C; Ross P; Sahl HG
    Mol Microbiol; 2006 Jul; 61(2):285-96. PubMed ID: 16771847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Docking on Lipid II-A Widespread Mechanism for Potent Bactericidal Activities of Antibiotic Peptides.
    Grein F; Schneider T; Sahl HG
    J Mol Biol; 2019 Aug; 431(18):3520-3530. PubMed ID: 31100388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Dynamics Simulations Reveal the Conformational Flexibility of Lipid II and Its Loose Association with the Defensin Plectasin in the Staphylococcus aureus Membrane.
    Witzke S; Petersen M; Carpenter TS; Khalid S
    Biochemistry; 2016 Jun; 55(23):3303-14. PubMed ID: 27158738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vivo Probe of Lipid II-Interacting Proteins.
    Sarkar S; Libby EA; Pidgeon SE; Dworkin J; Pires MM
    Angew Chem Int Ed Engl; 2016 Jul; 55(29):8401-4. PubMed ID: 27225706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity.
    Wiedemann I; Breukink E; van Kraaij C; Kuipers OP; Bierbaum G; de Kruijff B; Sahl HG
    J Biol Chem; 2001 Jan; 276(3):1772-9. PubMed ID: 11038353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural insights into inhibition of lipid I production in bacterial cell wall synthesis.
    Chung BC; Mashalidis EH; Tanino T; Kim M; Matsuda A; Hong J; Ichikawa S; Lee SY
    Nature; 2016 May; 533(7604):557-560. PubMed ID: 27088606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria.
    Kraszewska J; Beckett MC; James TC; Bond U
    Appl Environ Microbiol; 2016 Jul; 82(14):4288-4298. PubMed ID: 27208129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway.
    Schneider T; Sahl HG
    Int J Med Microbiol; 2010 Feb; 300(2-3):161-9. PubMed ID: 20005776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and Biological Characterization of Mouse beta-defensin 14, the orthologue of human beta-defensin 3.
    Röhrl J; Yang D; Oppenheim JJ; Hehlgans T
    J Biol Chem; 2008 Feb; 283(9):5414-9. PubMed ID: 18167348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of peptidoglycan biosynthesis in gram-positive bacteria by LY146032.
    Allen NE; Hobbs JN; Alborn WE
    Antimicrob Agents Chemother; 1987 Jul; 31(7):1093-9. PubMed ID: 2821889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity.
    Lee JY; Suh JS; Kim JM; Kim JH; Park HJ; Park YJ; Chung CP
    Int J Nanomedicine; 2015; 10():5423-34. PubMed ID: 26347021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering and characterization of human β-defensin-3 and its analogues and microcin J25 peptides against Mannheimia haemolytica and bovine neutrophils.
    Dhingra H; Kaur K; Singh B
    Vet Res; 2021 Jun; 52(1):83. PubMed ID: 34112244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential inhibition of Staphylococcus aureus PBP2 by glycopeptide antibiotics.
    Leimkuhler C; Chen L; Barrett D; Panzone G; Sun B; Falcone B; Oberthür M; Donadio S; Walker S; Kahne D
    J Am Chem Soc; 2005 Mar; 127(10):3250-1. PubMed ID: 15755121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting bactoprenol-coupled cell envelope precursors.
    Ulm H; Schneider T
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7815-25. PubMed ID: 27495122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The innate defense antimicrobial peptides hBD3 and RNase7 are induced in human umbilical vein endothelial cells by classical inflammatory cytokines but not Th17 cytokines.
    Burgey C; Kern WV; Römer W; Sakinc T; Rieg S
    Microbes Infect; 2015 May; 17(5):353-9. PubMed ID: 25637949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The β-lactamase gene regulator AmpR is a tetramer that recognizes and binds the D-Ala-D-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide.
    Vadlamani G; Thomas MD; Patel TR; Donald LJ; Reeve TM; Stetefeld J; Standing KG; Vocadlo DJ; Mark BL
    J Biol Chem; 2015 Jan; 290(5):2630-43. PubMed ID: 25480792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring.
    Perry AM; Ton-That H; Mazmanian SK; Schneewind O
    J Biol Chem; 2002 May; 277(18):16241-8. PubMed ID: 11856734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capillary zone electrophoresis assay of the uridine diphosphate N-acetylmuramyl peptide precursors and the disaccharide pentapeptide derivative of bacterial cell wall peptidoglycan.
    Richards RM; Xing DK
    J Pharm Biomed Anal; 1994 Mar; 12(3):301-5. PubMed ID: 8031928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate.
    Schneider T; Gries K; Josten M; Wiedemann I; Pelzer S; Labischinski H; Sahl HG
    Antimicrob Agents Chemother; 2009 Apr; 53(4):1610-8. PubMed ID: 19164139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.