BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 20385902)

  • 1. Clearance of mutant proteins as a therapeutic target in neurodegenerative diseases.
    Krainc D
    Arch Neurol; 2010 Apr; 67(4):388-92. PubMed ID: 20385902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.
    Ciechanover A; Kwon YT
    Exp Mol Med; 2015 Mar; 47(3):e147. PubMed ID: 25766616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of misfolded proteins by autophagy: is it a strategy for Huntington's disease treatment?
    Lin F; Qin ZH
    J Huntingtons Dis; 2013; 2(2):149-57. PubMed ID: 25063512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurodegenerative disease: Tracking disease progress in Huntington disease.
    Barker RA; Mason SL
    Nat Rev Neurol; 2011 Apr; 7(4):192-3. PubMed ID: 21403672
    [No Abstract]   [Full Text] [Related]  

  • 5. Paradoxical aggregation versus oligomerisation properties of mutant and wild-type huntingtin fragments.
    Rubinsztein DC; Huntington JA
    Exp Neurol; 2006 Jun; 199(2):243-4. PubMed ID: 16631742
    [No Abstract]   [Full Text] [Related]  

  • 6. Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities.
    Harding RJ; Tong YF
    Acta Pharmacol Sin; 2018 May; 39(5):754-769. PubMed ID: 29620053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila.
    Steffan JS; Bodai L; Pallos J; Poelman M; McCampbell A; Apostol BL; Kazantsev A; Schmidt E; Zhu YZ; Greenwald M; Kurokawa R; Housman DE; Jackson GR; Marsh JL; Thompson LM
    Nature; 2001 Oct; 413(6857):739-43. PubMed ID: 11607033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin.
    Maiti P; Manna J; Veleri S; Frautschy S
    Biomed Res Int; 2014; 2014():495091. PubMed ID: 25386560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biologically active molecules that reduce polyglutamine aggregation and toxicity.
    Desai UA; Pallos J; Ma AA; Stockwell BR; Thompson LM; Marsh JL; Diamond MI
    Hum Mol Genet; 2006 Jul; 15(13):2114-24. PubMed ID: 16720620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Huntington's disease: degradation of mutant huntingtin by autophagy.
    Sarkar S; Rubinsztein DC
    FEBS J; 2008 Sep; 275(17):4263-70. PubMed ID: 18637946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin.
    Jiang H; Poirier MA; Liang Y; Pei Z; Weiskittel CE; Smith WW; DeFranco DB; Ross CA
    Neurobiol Dis; 2006 Sep; 23(3):543-51. PubMed ID: 16766198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation of huntingtin aggregation in cells.
    Wetzel R
    Nat Chem Biol; 2006 Jun; 2(6):297-8. PubMed ID: 16710335
    [No Abstract]   [Full Text] [Related]  

  • 13. Polyglutamine disease: acetyltransferases awry.
    Hughes RE
    Curr Biol; 2002 Feb; 12(4):R141-3. PubMed ID: 11864588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Huntington's disease--making connections.
    Greenamyre JT
    N Engl J Med; 2007 Feb; 356(5):518-20. PubMed ID: 17267914
    [No Abstract]   [Full Text] [Related]  

  • 15. Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington's disease mice: implications for the ubiquitin-proteasomal and autophagy systems.
    Jia H; Kast RJ; Steffan JS; Thomas EA
    Hum Mol Genet; 2012 Dec; 21(24):5280-93. PubMed ID: 22965876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autophagy in Huntington disease and huntingtin in autophagy.
    Martin DD; Ladha S; Ehrnhoefer DE; Hayden MR
    Trends Neurosci; 2015 Jan; 38(1):26-35. PubMed ID: 25282404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone deacetylase inhibitors: a novel therapeutic approach to Huntington's disease (complex mechanism of neuronal death).
    Sadri-Vakili G; Cha JH
    Curr Alzheimer Res; 2006 Sep; 3(4):403-8. PubMed ID: 17017871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal transport failure in neurodegenerative disorders: the case of Huntington's disease.
    Charrin BC; Saudou F; Humbert S
    Pathol Biol (Paris); 2005 May; 53(4):189-92. PubMed ID: 15850950
    [No Abstract]   [Full Text] [Related]  

  • 19. Modulating epigenetic HAT activity for reinstating acetylation homeostasis: A promising therapeutic strategy for neurological disorders.
    Ganai SA; Banday S; Farooq Z; Altaf M
    Pharmacol Ther; 2016 Oct; 166():106-22. PubMed ID: 27411674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Huntingtin processing in pathogenesis of Huntington disease.
    Qin ZH; Gu ZL
    Acta Pharmacol Sin; 2004 Oct; 25(10):1243-9. PubMed ID: 15456523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.