BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20386705)

  • 1. Reciprocal subsidies and food web pathways leading to chum salmon fry in a temperate marine-terrestrial ecotone.
    Romanuk TN; Levings CD
    PLoS One; 2010 Apr; 5(4):e10073. PubMed ID: 20386705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location is everything: evaluating the effects of terrestrial and marine resource subsidies on an estuarine bivalve.
    Harding JM; Segal MR; Reynolds JD
    PLoS One; 2015; 10(5):e0125167. PubMed ID: 25993002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest.
    Hocking MD; Reimchen TE
    BMC Ecol; 2002 Mar; 2():4. PubMed ID: 11914157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine resource flows to terrestrial arthropod predators on a temperate island: the role of subsidies between systems of similar productivity.
    Paetzold A; Lee M; Post DM
    Oecologia; 2008 Oct; 157(4):653-9. PubMed ID: 18597119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allochthonous marsh subsidies enhances food web productivity in an estuary and its surrounding ecosystem mosaic.
    Davis MJ; Woo I; De La Cruz SEW; Ellings CS; Hodgson S; Nakai G
    PLoS One; 2024; 19(2):e0296836. PubMed ID: 38421974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of seawater transfer and fasting on the endocrine and biochemical growth indices in juvenile chum salmon (Oncorhynchus keta).
    Taniyama N; Kaneko N; Inatani Y; Miyakoshi Y; Shimizu M
    Gen Comp Endocrinol; 2016 Sep; 236():146-156. PubMed ID: 27444127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking Intertidal and Subtidal Food Webs: Consumer-Mediated Transport of Intertidal Benthic Microalgal Carbon.
    Kang CK; Park HJ; Choy EJ; Choi KS; Hwang K; Kim JB
    PLoS One; 2015; 10(10):e0139802. PubMed ID: 26448137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable isotope signatures reveal the significant contributions of microphytobenthos and saltmarsh-driven nutrition in the intertidal benthic food webs.
    Lee IO; Noh J; Lee J; Kim B; Hwang K; Kwon BO; Lee MJ; Ryu J; Nam J; Khim JS
    Sci Total Environ; 2021 Feb; 756():144068. PubMed ID: 33288261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circulating insulin-like growth factor I in juvenile chum salmon: relationship with growth rate and changes during downstream and coastal migration in northeastern Hokkaido, Japan.
    Kaneko N; Taniyama N; Inatani Y; Nagano Y; Fujiwara M; Torao M; Miyakoshi Y; Shimizu M
    Fish Physiol Biochem; 2015 Aug; 41(4):991-1003. PubMed ID: 25948054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.
    Kautza A; Mazeika S; Sullivan P
    Ecology; 2016 Mar; 97(3):694-705. PubMed ID: 27197396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America.
    Malick MJ; Cox SP
    PLoS One; 2016; 11(1):e0146009. PubMed ID: 26760510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piscirickettsia salmonis shedding and tissue burden, and hematological responses during cohabitation infections in chum Oncorhynchus keta, pink O. gorbuscha and Atlantic salmon Salmo salar.
    Long A; Jones SRM
    PLoS One; 2021; 16(3):e0248098. PubMed ID: 33667267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential support of lake food webs by three types of terrestrial organic carbon.
    Cole JJ; Carpenter SR; Pace ML; Van de Bogert MC; Kitchell JL; Hodgson JR
    Ecol Lett; 2006 May; 9(5):558-68. PubMed ID: 16643301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of laser ablation ICPMS to trace the environmental history of chum salmon Oncorhynchus keta.
    Arai T; Hirata T; Takagi Y
    Mar Environ Res; 2007 Feb; 63(1):55-66. PubMed ID: 16904739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic properties of three isoforms of trypsin isolated from the pyloric caeca of chum salmon (Oncorhynchus keta).
    Toyota E; Iyaguchi D; Sekizaki H; Itoh K; Tanizawa K
    Biol Pharm Bull; 2007 Sep; 30(9):1648-52. PubMed ID: 17827714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Confocal Microscopic Study of Gene Transfer into the Mesencephalic Tegmentum of Juvenile Chum Salmon,
    Pushchina EV; Kapustyanov IA; Shamshurina EV; Varaksin AA
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Differentiation of chum salmon Oncorhynchus keta Walbaum populations as revealed with microsatellite and allozyme markers: a comparison].
    Rubtsoba GA; Afanas'ev KI; Malinina TV; Shitova MV; Rakitskaia TA; Prokhorovskaia VD; Zhivotovskiĭ LA
    Genetika; 2008 Jul; 44(7):964-71. PubMed ID: 18767545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salmon subsidize an escape from a size spectrum.
    Hocking MD; Dulvy NK; Reynolds JD; Ring RA; Reimchen TE
    Proc Biol Sci; 2013 Feb; 280(1753):20122433. PubMed ID: 23282994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature seasonality during fry out-migration influences the survival of hatchery-reared chum salmon Oncorhynchus keta.
    Morita K; Nakashima A
    J Fish Biol; 2015 Oct; 87(4):1111-7. PubMed ID: 26377831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.
    Arimitsu ML; Hobson KA; Webber DN; Piatt JF; Hood EW; Fellman JB
    Glob Chang Biol; 2018 Jan; 24(1):387-398. PubMed ID: 28833910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.