BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

640 related articles for article (PubMed ID: 20386726)

  • 1. Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry.
    Splinter D; Tanenbaum ME; Lindqvist A; Jaarsma D; Flotho A; Yu KL; Grigoriev I; Engelsma D; Haasdijk ED; Keijzer N; Demmers J; Fornerod M; Melchior F; Hoogenraad CC; Medema RH; Akhmanova A
    PLoS Biol; 2010 Apr; 8(4):e1000350. PubMed ID: 20386726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Asunder promotes dynein recruitment and centrosomal tethering to the nucleus at mitotic entry.
    Jodoin JN; Shboul M; Sitaram P; Zein-Sabatto H; Reversade B; Lee E; Lee LA
    Mol Biol Cell; 2012 Dec; 23(24):4713-24. PubMed ID: 23097494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lamins position the nuclear pores and centrosomes by modulating dynein.
    Guo Y; Zheng Y
    Mol Biol Cell; 2015 Oct; 26(19):3379-89. PubMed ID: 26246603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase.
    Bolhy S; Bouhlel I; Dultz E; Nayak T; Zuccolo M; Gatti X; Vallee R; Ellenberg J; Doye V
    J Cell Biol; 2011 Mar; 192(5):855-71. PubMed ID: 21383080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes.
    Hoogenraad CC; Akhmanova A; Howell SA; Dortland BR; De Zeeuw CI; Willemsen R; Visser P; Grosveld F; Galjart N
    EMBO J; 2001 Aug; 20(15):4041-54. PubMed ID: 11483508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures.
    Splinter D; Razafsky DS; Schlager MA; Serra-Marques A; Grigoriev I; Demmers J; Keijzer N; Jiang K; Poser I; Hyman AA; Hoogenraad CC; King SJ; Akhmanova A
    Mol Biol Cell; 2012 Nov; 23(21):4226-41. PubMed ID: 22956769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain progenitor cells.
    Hu DJ; Baffet AD; Nayak T; Akhmanova A; Doye V; Vallee RB
    Cell; 2013 Sep; 154(6):1300-13. PubMed ID: 24034252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adapter Proteins for Opposing Motors Interact Simultaneously with Nuclear Pore Protein Nup358.
    Cui H; Noell CR; Behler RP; Zahn JB; Terry LR; Russ BB; Solmaz SR
    Biochemistry; 2019 Dec; 58(50):5085-5097. PubMed ID: 31756096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HIV-1 Engages a Dynein-Dynactin-BICD2 Complex for Infection and Transport to the Nucleus.
    Carnes SK; Zhou J; Aiken C
    J Virol; 2018 Oct; 92(20):. PubMed ID: 30068656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coil-to-α-helix transition at the Nup358-BicD2 interface activates BicD2 for dynein recruitment.
    Gibson JM; Cui H; Ali MY; Zhao X; Debler EW; Zhao J; Trybus KM; Solmaz SR; Wang C
    Elife; 2022 Mar; 11():. PubMed ID: 35229716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BICD2 phosphorylation regulates dynein function and centrosome separation in G2 and M.
    Gallisà-Suñé N; Sànchez-Fernàndez-de-Landa P; Zimmermann F; Serna M; Regué L; Paz J; Llorca O; Lüders J; Roig J
    Nat Commun; 2023 Apr; 14(1):2434. PubMed ID: 37105961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nesprin-2 Recruitment of BicD2 to the Nuclear Envelope Controls Dynein/Kinesin-Mediated Neuronal Migration In Vivo.
    Gonçalves JC; Quintremil S; Yi J; Vallee RB
    Curr Biol; 2020 Aug; 30(16):3116-3129.e4. PubMed ID: 32619477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdk1 Activates Pre-mitotic Nuclear Envelope Dynein Recruitment and Apical Nuclear Migration in Neural Stem Cells.
    Baffet AD; Hu DJ; Vallee RB
    Dev Cell; 2015 Jun; 33(6):703-16. PubMed ID: 26051540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transient helix in the disordered region of dynein light intermediate chain links the motor to structurally diverse adaptors for cargo transport.
    Celestino R; Henen MA; Gama JB; Carvalho C; McCabe M; Barbosa DJ; Born A; Nichols PJ; Carvalho AX; Gassmann R; Vögeli B
    PLoS Biol; 2019 Jan; 17(1):e3000100. PubMed ID: 30615611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Quantitative Model for BicD2/Cargo Interactions.
    Noell CR; Loftus KM; Cui H; Grewer C; Kizer M; Debler EW; Solmaz SR
    Biochemistry; 2018 Nov; 57(46):6538-6550. PubMed ID: 30345745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport.
    Hoogenraad CC; Wulf P; Schiefermeier N; Stepanova T; Galjart N; Small JV; Grosveld F; de Zeeuw CI; Akhmanova A
    EMBO J; 2003 Nov; 22(22):6004-15. PubMed ID: 14609947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynein and dynactin as organizers of the system of cell microtubules].
    Burakov AV; Nadezhdina ES
    Ontogenez; 2006; 37(5):323-39. PubMed ID: 17066975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Nesprin-2 and RanBP2 in BICD2-associated brain developmental disorders.
    Yi J; Zhao X; Noell CR; Helmer P; Solmaz SR; Vallee RB
    PLoS Genet; 2023 Mar; 19(3):e1010642. PubMed ID: 36930595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CEP215 is involved in the dynein-dependent accumulation of pericentriolar matrix proteins for spindle pole formation.
    Lee S; Rhee K
    Cell Cycle; 2010 Feb; 9(4):774-83. PubMed ID: 20139723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic dissection of dynein regulators in mitosis.
    Raaijmakers JA; Tanenbaum ME; Medema RH
    J Cell Biol; 2013 Apr; 201(2):201-15. PubMed ID: 23589491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.