These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 20386741)
1. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. Nowrousian M; Stajich JE; Chu M; Engh I; Espagne E; Halliday K; Kamerewerd J; Kempken F; Knab B; Kuo HC; Osiewacz HD; Pöggeler S; Read ND; Seiler S; Smith KM; Zickler D; Kück U; Freitag M PLoS Genet; 2010 Apr; 6(4):e1000891. PubMed ID: 20386741 [TBL] [Abstract][Full Text] [Related]
2. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation. Nowrousian M; Würtz C; Pöggeler S; Kück U Fungal Genet Biol; 2004 Mar; 41(3):285-92. PubMed ID: 14761789 [TBL] [Abstract][Full Text] [Related]
3. A novel polyketide biosynthesis gene cluster is involved in fruiting body morphogenesis in the filamentous fungi Sordaria macrospora and Neurospora crassa. Nowrousian M Curr Genet; 2009 Apr; 55(2):185-98. PubMed ID: 19277664 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs. Pöggeler S; Kück U Mol Gen Genet; 2000 Mar; 263(2):292-301. PubMed ID: 10778748 [TBL] [Abstract][Full Text] [Related]
5. Observing meiosis in filamentous fungi: Sordaria and Neurospora. Zickler D Methods Mol Biol; 2009; 558():91-114. PubMed ID: 19685321 [TBL] [Abstract][Full Text] [Related]
6. The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution. Traeger S; Altegoer F; Freitag M; Gabaldon T; Kempken F; Kumar A; Marcet-Houben M; Pöggeler S; Stajich JE; Nowrousian M PLoS Genet; 2013; 9(9):e1003820. PubMed ID: 24068976 [TBL] [Abstract][Full Text] [Related]
7. Sordaria macrospora, a model organism to study fungal cellular development. Engh I; Nowrousian M; Kück U Eur J Cell Biol; 2010 Dec; 89(12):864-72. PubMed ID: 20739093 [TBL] [Abstract][Full Text] [Related]
8. Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Pöggeler S; Kück U Gene; 2001 Dec; 280(1-2):9-17. PubMed ID: 11738813 [TBL] [Abstract][Full Text] [Related]
9. Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB40. Umemura M; Koyama Y; Takeda I; Hagiwara H; Ikegami T; Koike H; Machida M PLoS One; 2013; 8(5):e63673. PubMed ID: 23667655 [TBL] [Abstract][Full Text] [Related]
10. Evolution and diversity of a fungal self/nonself recognition locus. Hall C; Welch J; Kowbel DJ; Glass NL PLoS One; 2010 Nov; 5(11):e14055. PubMed ID: 21124910 [TBL] [Abstract][Full Text] [Related]
11. De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing. Dhar R; Seethy A; Pethusamy K; Singh S; Rohil V; Purkayastha K; Mukherjee I; Goswami S; Singh R; Raj A; Srivastava T; Acharya S; Rajashekhar B; Karmakar S Gigascience; 2019 May; 8(5):. PubMed ID: 31077316 [TBL] [Abstract][Full Text] [Related]
12. SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome. Stadermann KB; Weisshaar B; Holtgräwe D BMC Bioinformatics; 2015 Sep; 16(1):295. PubMed ID: 26377912 [TBL] [Abstract][Full Text] [Related]
13. A pilot study for channel catfish whole genome sequencing and de novo assembly. Jiang Y; Lu J; Peatman E; Kucuktas H; Liu S; Wang S; Sun F; Liu Z BMC Genomics; 2011 Dec; 12():629. PubMed ID: 22192763 [TBL] [Abstract][Full Text] [Related]
14. Comparison of different sequencing and assembly strategies for a repeat-rich fungal genome, Ophiocordyceps sinensis. Li Y; Hsiang T; Yang RH; Hu XD; Wang K; Wang WJ; Wang XL; Jiao L; Yao YJ J Microbiol Methods; 2016 Sep; 128():1-6. PubMed ID: 27343682 [TBL] [Abstract][Full Text] [Related]
15. Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Pöggeler S; Kück U Gene; 2006 Aug; 378():1-10. PubMed ID: 16814491 [TBL] [Abstract][Full Text] [Related]
16. Sordaria macrospora: 25 years as a model organism for studying the molecular mechanisms of fruiting body development. Teichert I; Pöggeler S; Nowrousian M Appl Microbiol Biotechnol; 2020 May; 104(9):3691-3704. PubMed ID: 32162092 [TBL] [Abstract][Full Text] [Related]
17. De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Diguistini S; Liao NY; Platt D; Robertson G; Seidel M; Chan SK; Docking TR; Birol I; Holt RA; Hirst M; Mardis E; Marra MA; Hamelin RC; Bohlmann J; Breuil C; Jones SJ Genome Biol; 2009; 10(9):R94. PubMed ID: 19747388 [TBL] [Abstract][Full Text] [Related]
18. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome. Faino L; Seidl MF; Datema E; van den Berg GC; Janssen A; Wittenberg AH; Thomma BP mBio; 2015 Aug; 6(4):. PubMed ID: 26286689 [TBL] [Abstract][Full Text] [Related]
19. The gene for a lectin-like protein is transcriptionally activated during sexual development, but is not essential for fruiting body formation in the filamentous fungus Sordaria macrospora. Nowrousian M; Cebula P BMC Microbiol; 2005 Nov; 5():64. PubMed ID: 16266439 [TBL] [Abstract][Full Text] [Related]
20. Combination of Proteogenomics with Peptide Blank-Landeshammer B; Teichert I; Märker R; Nowrousian M; Kück U; Sickmann A mBio; 2019 Oct; 10(5):. PubMed ID: 31615963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]