These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20386819)

  • 1. Conducting polymer artificial muscle fibres: toward an open air linear actuation.
    Plesse C; Vidal F; Teyssié D; Chevrot C
    Chem Commun (Camb); 2010 May; 46(17):2910-2. PubMed ID: 20386819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of conducting polymers to a biorobotic fin propulsor.
    Tangorra J; Anquetil P; Fofonoff T; Chen A; Del Zio M; Hunter I
    Bioinspir Biomim; 2007 Jun; 2(2):S6-17. PubMed ID: 17671330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Work behaviors of artificial muscle based on cation driven polypyrrole.
    Fujisue H; Sendai T; Yamato K; Takashima W; Kaneto K
    Bioinspir Biomim; 2007 Jun; 2(2):S1-5. PubMed ID: 17671325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of artificial muscles based on electroactive ionomeric polymer-metal composites.
    Hirano LA; Escote MT; Martins-Filho LS; Mantovani GL; Scuracchio CH
    Artif Organs; 2011 May; 35(5):478-83. PubMed ID: 21595715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic dual sensing-actuators based on conducting polymers. Galvanostatic theoretical model for actuators sensing temperature.
    Otero TF; Sanchez JJ; Martinez JG
    J Phys Chem B; 2012 May; 116(17):5279-90. PubMed ID: 22455612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide.
    Rajagopalan M; Oh IK
    ACS Nano; 2011 Mar; 5(3):2248-56. PubMed ID: 21332175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An artificial muscle actuator for biomimetic underwater propulsors.
    Yim W; Lee J; Kim KJ
    Bioinspir Biomim; 2007 Jun; 2(2):S31-41. PubMed ID: 17671327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic fabrication of 3D structures by spontaneous folding of tapes.
    Bruzewicz DA; Boncheva M; Winkleman A; St Clair JM; Engel GS; Whitesides GM
    J Am Chem Soc; 2006 Jul; 128(29):9314-5. PubMed ID: 16848450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofunctionalized, ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins.
    Groll J; Amirgoulova EV; Ameringer T; Heyes CD; Röcker C; Nienhaus GU; Möller M
    J Am Chem Soc; 2004 Apr; 126(13):4234-9. PubMed ID: 15053612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular domain structure: a biomimetic strategy for advanced polymeric materials.
    Guan Z; Roland JT; Bai JZ; Ma SX; McIntire TM; Nguyen M
    J Am Chem Soc; 2004 Feb; 126(7):2058-65. PubMed ID: 14971940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA/polymeric micelle self-assembly mimicking chromatin compaction.
    Zhang K; Jiang M; Chen D
    Angew Chem Int Ed Engl; 2012 Aug; 51(35):8744-7. PubMed ID: 22829259
    [No Abstract]   [Full Text] [Related]  

  • 12. Biomimetic materials and micropatterned structures using iniferters.
    Peppas NA; Ward JH
    Adv Drug Deliv Rev; 2004 Sep; 56(11):1587-97. PubMed ID: 15350290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conducting polymers in electronic chemical sensors.
    Janata J; Josowicz M
    Nat Mater; 2003 Jan; 2(1):19-24. PubMed ID: 12652667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current and future developments in artificial muscles using electroactive polymers.
    Bar-Cohen Y
    Expert Rev Med Devices; 2005 Nov; 2(6):731-40. PubMed ID: 16293100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust, biomimetic polymer brush layers grown directly from a planar mica surface.
    Chen M; Briscoe WH; Armes SP; Cohen H; Klein J
    Chemphyschem; 2007 Jun; 8(9):1303-6. PubMed ID: 17510991
    [No Abstract]   [Full Text] [Related]  

  • 16. Enzymatic synthesis of organic-polymer-grafted DNA.
    Baccaro A; Marx A
    Chemistry; 2010 Jan; 16(1):218-26. PubMed ID: 19921720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric materials as artificial muscles: an overview.
    Ariano P; Accardo D; Lombardi M; Bocchini S; Draghi L; De Nardo L; Fino P
    J Appl Biomater Funct Mater; 2015 Mar; 13(1):1-9. PubMed ID: 24700263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training effect and fatigue in polypyrrole-based artificial muscles.
    Kaneto K; Suematsu H; Yamato K
    Bioinspir Biomim; 2008 Sep; 3(3):035005. PubMed ID: 18667757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemically active, anti-biofouling polymer adlayers on indium-tin-oxide electrodes.
    Kim EJ; Shin HY; Park S; Sung D; Jon S; Sampathkumar SG; Yarema KJ; Choi SY; Kim K
    Chem Commun (Camb); 2008 Aug; (30):3543-5. PubMed ID: 18654707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convenient polymer-supported synthetic route to heterobifunctional polyethylene glycols.
    Bettinger T; Remy JS; Erbacher P; Behr JP
    Bioconjug Chem; 1998; 9(6):842-6. PubMed ID: 9815180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.