BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20387049)

  • 1. Thiol-disulfide redox proteomics in plant research.
    Muthuramalingam M; Dietz KJ; Ströher E
    Methods Mol Biol; 2010; 639():219-38. PubMed ID: 20387049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Click chemistry-based thiol redox proteomics reveals significant cysteine reduction induced by chronic ethanol consumption.
    Harris PS; McGinnis CD; Michel CR; Marentette JO; Reisdorph R; Roede JR; Fritz KS
    Redox Biol; 2023 Aug; 64():102792. PubMed ID: 37390786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo.
    Leichert LI; Gehrke F; Gudiseva HV; Blackwell T; Ilbert M; Walker AK; Strahler JR; Andrews PC; Jakob U
    Proc Natl Acad Sci U S A; 2008 Jun; 105(24):8197-202. PubMed ID: 18287020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-based functional mimicry of phosphorylation of the two-component system response regulator ArcA promotes pathogenesis in enteric pathogens.
    Zhou Y; Pu Q; Chen J; Hao G; Gao R; Ali A; Hsiao A; Stock AM; Goulian M; Zhu J
    Cell Rep; 2021 Dec; 37(12):110147. PubMed ID: 34936880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for the determination and quantification of the reactive thiol proteome.
    Hill BG; Reily C; Oh JY; Johnson MS; Landar A
    Free Radic Biol Med; 2009 Sep; 47(6):675-83. PubMed ID: 19527783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol redox proteomics: Characterization of thiol-based post-translational modifications.
    Li X; Gluth A; Zhang T; Qian WJ
    Proteomics; 2023 Jul; 23(13-14):e2200194. PubMed ID: 37248656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox proteomics in melanoma cells: An optimized protocol.
    Cunha ES; Mazepa E; Batista M; Marchini FK; Martinez GR
    Anal Biochem; 2024 Aug; 691():115543. PubMed ID: 38636731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins.
    Radzinski M; Oppenheim T; Metanis N; Reichmann D
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33809923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-dependent thiol modifications: implications for the release of extracellular vesicles.
    Benedikter BJ; Weseler AR; Wouters EFM; Savelkoul PHM; Rohde GGU; Stassen FRM
    Cell Mol Life Sci; 2018 Jul; 75(13):2321-2337. PubMed ID: 29594387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The redox-sensing mechanism of Agrobacterium tumefaciens NieR as a thiol-based oxidation sensor for hypochlorite stress.
    Nontaleerak B; Eurtivong C; Weeraphan C; Buncherd H; Chokchaichamnankit D; Srisomsap C; Svasti J; Sukchawalit R; Mongkolsuk S
    Free Radic Biol Med; 2023 Nov; 208():211-220. PubMed ID: 37544488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CysQuant: Simultaneous quantification of cysteine oxidation and protein abundance using data dependent or independent acquisition mass spectrometry.
    Huang J; Staes A; Impens F; Demichev V; Van Breusegem F; Gevaert K; Willems P
    Redox Biol; 2023 Nov; 67():102908. PubMed ID: 37793239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cysTMTRAQ-An integrative method for unbiased thiol-based redox proteomics.
    Parker J; Balmant K; Zhu F; Zhu N; Chen S
    Mol Cell Proteomics; 2015 Jan; 14(1):237-42. PubMed ID: 25316711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-driven dynamics: unravelling thiol-redox networks in plants through proteomics.
    Degen GE
    Plant Physiol; 2024 May; 195(2):1111-1113. PubMed ID: 38345862
    [No Abstract]   [Full Text] [Related]  

  • 14. A phosphine-based redox method for direct conjugation of disulfides.
    Lu Y; You L; Chen C
    Chem Commun (Camb); 2022 Nov; 58(89):12439-12442. PubMed ID: 36278800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide proteomics of rice cultured cells in response to OsRacl and probenazole-related immune signaling pathway in rice.
    Morino K; Kimizu M; Fujiwara M
    Proteome Sci; 2016; 15():6. PubMed ID: 28413359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of sulfhydryl-containing proteins and further evaluation of the selenium-tagged redox homeostasis-regulating proteins.
    Jiang Z; Tang Y; Lu J; Xu C; Niu Y; Zhang G; Yang Y; Cheng X; Tong L; Chen Z; Tang B
    Redox Biol; 2024 Feb; 69():102969. PubMed ID: 38064764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial protein sulfenation during aging in the rat brain.
    Yang X; Wu J; Jing S; Forster MJ; Yan LJ
    Biophys Rep; 2018; 4(2):104-113. PubMed ID: 29756010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunological Techniques to Assess Protein Thiol Redox State: Opportunities, Challenges and Solutions.
    Cobley JN; Husi H
    Antioxidants (Basel); 2020 Apr; 9(4):. PubMed ID: 32326525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of light and thioredoxins on the plant thiol-disulfide proteome.
    Hou LY; Sommer F; Poeker L; Dziubek D; Schroda M; Geigenberger P
    Plant Physiol; 2024 May; 195(2):1536-1560. PubMed ID: 38214043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OPDAylation of Thiols of the Redox Regulatory Network In Vitro.
    Knieper M; Vogelsang L; Guntelmann T; Sproß J; Gröger H; Viehhauser A; Dietz KJ
    Antioxidants (Basel); 2022 Apr; 11(5):. PubMed ID: 35624719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.