These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 2038708)

  • 1. [Postoperative external radiotherapy of differentiated thyroid carcinoma: when is radioiodine therapy alone inadequate? The dosimetric considerations with a Monte Carlo simulation].
    Sautter-Bihl ML; Herbold G; Heinze HG; Bihl H
    Strahlenther Onkol; 1991 May; 167(5):267-72. PubMed ID: 2038708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Late cervical lymph node recurrence in differentiated thyroid carcinoma. An inherent problem of 131I beta dose distribution in small tumor deposits?
    Sautter-Bihl ML; Herbold G; Heinze HG; Bihl H
    Nuklearmedizin; 1992 Aug; 31(4):137-41. PubMed ID: 1518723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D calculation of absorbed dose for 131I-targeted radiotherapy: a Monte Carlo study.
    Saeedzadeh E; Sarkar S; Abbaspour Tehrani-Fard A; Ay MR; Khosravi HR; Loudos G
    Radiat Prot Dosimetry; 2012 Jul; 150(3):298-305. PubMed ID: 22069233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of relapse following radiotherapy for differentiated thyroid cancer: implication for target volume delineation.
    Azrif M; Slevin NJ; Sykes AJ; Swindell R; Yap BK
    Radiother Oncol; 2008 Oct; 89(1):105-13. PubMed ID: 18579244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute toxicity of adjuvant radiotherapy in locally advanced differentiated thyroid carcinoma. First results of the multicenter study differentiated thyroid carcinoma (MSDS).
    Schuck A; Biermann M; Pixberg MK; Müller SB; Heinecke A; Schober O; Willich N
    Strahlenther Onkol; 2003 Dec; 179(12):832-9. PubMed ID: 14652672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planning of 131I therapy for graves disease based on the radiation dose to thyroid follicular cells.
    Eterovic D; Antunovic Z; Markovic V; Grosev D
    J Nucl Med; 2008 Dec; 49(12):2026-30. PubMed ID: 18997041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CELLDOSE: a Monte Carlo code to assess electron dose distribution--S values for 131I in spheres of various sizes.
    Champion C; Zanotti-Fregonara P; Hindié E
    J Nucl Med; 2008 Jan; 49(1):151-7. PubMed ID: 18077517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiolabeled antibody combined with external radiotherapy for the treatment of head and neck cancer: reconstruction of a theoretical phantom of the larynx for radiation dose calculation to local tissues.
    Maraveyas A; Myers M; Stafford N; Rowlinson-Busza G; Stewart JS; Epenetos AA
    Cancer Res; 1995 Mar; 55(5):1020-7. PubMed ID: 7866985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Diagnosis, treatment and follow-up in the case of differentiated thyroid cancer].
    Lind P; Igerc I; Kohlfürst S
    Wien Med Wochenschr; 2005 Oct; 155(19-20):429-35. PubMed ID: 16424998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study.
    Cho SH
    Phys Med Biol; 2005 Aug; 50(15):N163-73. PubMed ID: 16030374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 131I radiation dose distribution in metastases of thyroid carcinoma.
    Eterovic D; Markovic V; Punda A; Antunovic Z
    J Nucl Med; 2009 May; 50(5):833-4; author reply 834. PubMed ID: 19372490
    [No Abstract]   [Full Text] [Related]  

  • 12. S-factor calculations for mouse models using Monte-Carlo simulations.
    Bitar A; Lisbona A; Bardiès M
    Q J Nucl Med Mol Imaging; 2007 Dec; 51(4):343-51. PubMed ID: 17538523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation dose distributions in normal tissue adjacent to tumors containing (131)I or (90)Y: the potential for toxicity.
    Sparks RB; Crowe EA; Wong FC; Toohey RE; Siegel JA
    J Nucl Med; 2002 Aug; 43(8):1110-4. PubMed ID: 12163638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dosimetric algorithm for patient-specific 131I therapy of thyroid cancer based on a prescribed target-mass reduction.
    Traino AC; Di Martino F
    Phys Med Biol; 2006 Dec; 51(24):6449-56. PubMed ID: 17148828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hürthle cell carcinoma: a clinicopathological study of thirteen cases.
    Ozlem Küçük N; Kulak H; Tokmak E; Tar P; Ibiş E; Aras G
    Nucl Med Commun; 2006 Apr; 27(4):377-9. PubMed ID: 16531925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cytogenetic study of thyroid patients treated with external irradiation or radioiodine].
    Katz N; Esik O; Füzy M; Gundy S
    Orv Hetil; 1998 Jun; 139(25):1521-6. PubMed ID: 9676113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planning a dose-response study with subject-specific doses.
    Gönen M
    Stat Med; 2005 Sep; 24(17):2613-23. PubMed ID: 15977297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-fire doses from beta-emitting radionuclides in targeted radiotherapy. A theoretical study based on experimentally measured tumor characteristics.
    Enger SA; Hartman T; Carlsson J; Lundqvist H
    Phys Med Biol; 2008 Apr; 53(7):1909-20. PubMed ID: 18364546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prognostic factors in patients with Hürthle cell neoplasms of the thyroid.
    Lopez-Penabad L; Chiu AC; Hoff AO; Schultz P; Gaztambide S; Ordoñez NG; Sherman SI
    Cancer; 2003 Mar; 97(5):1186-94. PubMed ID: 12599224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.