These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20387098)

  • 81. Permeability of chemical delivery systems across rabbit corneal (SIRC) cell line and isolated corneas: a comparative study.
    Goskonda VR; Hill RA; Khan MA; Reddy IK
    Pharm Dev Technol; 2000; 5(3):409-16. PubMed ID: 10934741
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Physicochemical QSAR Analysis of Passive Permeability Across Caco-2 Monolayers.
    Lanevskij K; Didziapetris R
    J Pharm Sci; 2019 Jan; 108(1):78-86. PubMed ID: 30321548
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Application of ALOGPS 2.1 to predict log D distribution coefficient for Pfizer proprietary compounds.
    Tetko IV; Poda GI
    J Med Chem; 2004 Nov; 47(23):5601-4. PubMed ID: 15509156
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets.
    Wenzel J; Matter H; Schmidt F
    J Chem Inf Model; 2019 Mar; 59(3):1253-1268. PubMed ID: 30615828
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A study of the relationship between cornea permeability and eye irritation using membrane-interaction QSAR analysis.
    Li Y; Liu J; Pan D; Hopfinger AJ
    Toxicol Sci; 2005 Dec; 88(2):434-46. PubMed ID: 16162848
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Computational prediction of formulation strategies for beyond-rule-of-5 compounds.
    Bergström CAS; Charman WN; Porter CJH
    Adv Drug Deliv Rev; 2016 Jun; 101():6-21. PubMed ID: 26928657
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Predicting P-glycoprotein substrates by a quantitative structure-activity relationship model.
    Gombar VK; Polli JW; Humphreys JE; Wring SA; Serabjit-Singh CS
    J Pharm Sci; 2004 Apr; 93(4):957-68. PubMed ID: 14999732
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A quantitative structure-property relationship for predicting drug solubility in PEG 400/water cosolvent systems.
    Rytting E; Lentz KA; Chen XQ; Qian F; Venkatesh S
    Pharm Res; 2004 Feb; 21(2):237-44. PubMed ID: 15032304
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Predicting the oral absorption of a poorly soluble, poorly permeable weak base using biorelevant dissolution and transfer model tests coupled with a physiologically based pharmacokinetic model.
    Wagner C; Jantratid E; Kesisoglou F; Vertzoni M; Reppas C; B Dressman J
    Eur J Pharm Biopharm; 2012 Sep; 82(1):127-38. PubMed ID: 22652546
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Corneal penetration into rabbit aqueous humor is comparable between preserved and preservative-free tafluprost.
    Pellinen P; Lokkila J
    Ophthalmic Res; 2009; 41(2):118-22. PubMed ID: 19147999
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux.
    Karla PK; Quinn TL; Herndon BL; Thomas P; Pal D; Mitra A
    J Ocul Pharmacol Ther; 2009 Apr; 25(2):121-32. PubMed ID: 19323627
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches.
    Basant N; Gupta S; Singh KP
    SAR QSAR Environ Res; 2016; 27(1):67-85. PubMed ID: 26854728
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Global and local computational models for aqueous solubility prediction of drug-like molecules.
    Bergström CA; Wassvik CM; Norinder U; Luthman K; Artursson P
    J Chem Inf Comput Sci; 2004; 44(4):1477-88. PubMed ID: 15272856
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Predicting Skin Permeability by Means of Computational Approaches: Reliability and Caveats in Pharmaceutical Studies.
    Pecoraro B; Tutone M; Hoffman E; Hutter V; Almerico AM; Traynor M
    J Chem Inf Model; 2019 May; 59(5):1759-1771. PubMed ID: 30658035
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Quantitative structure--plasma protein binding relationships of acidic drugs.
    Zhivkova Z; Doytchinova I
    J Pharm Sci; 2012 Dec; 101(12):4627-41. PubMed ID: 22961754
    [TBL] [Abstract][Full Text] [Related]  

  • 96. ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors.
    Hou TJ; Xu XJ
    J Chem Inf Comput Sci; 2003; 43(6):2137-52. PubMed ID: 14632466
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates.
    Shen M; Xiao Y; Golbraikh A; Gombar VK; Tropsha A
    J Med Chem; 2003 Jul; 46(14):3013-20. PubMed ID: 12825940
    [TBL] [Abstract][Full Text] [Related]  

  • 98. First-principle, structure-based prediction of hepatic metabolic clearance values in human.
    Li H; Sun J; Sui X; Liu J; Yan Z; Liu X; Sun Y; He Z
    Eur J Med Chem; 2009 Apr; 44(4):1600-6. PubMed ID: 18768239
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Corneal Permeability and Uptake of Twenty-Five Drugs: Species Comparison and Quantitative Structure-Permeability Relationships.
    Santana CP; Matter BA; Patil MA; Silva-Cunha A; Kompella UB
    Pharmaceutics; 2023 Jun; 15(6):. PubMed ID: 37376094
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Back to the future: can physical models of passive membrane permeability help reduce drug candidate attrition and move us beyond QSPR?
    Swift RV; Amaro RE
    Chem Biol Drug Des; 2013 Jan; 81(1):61-71. PubMed ID: 23066853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.