BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20387537)

  • 1. [The use of mice in glaucoma research --to clarify the mechanism of intraocular pressure regulation and retinal ganglion cell damage].
    Aihara M
    Nippon Ganka Gakkai Zasshi; 2010 Mar; 114(3):217-46; discussion 247. PubMed ID: 20387537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mouse ocular explant model that enables the study of living optic nerve head events after acute and chronic intraocular pressure elevation: Focusing on retinal ganglion cell axons and mitochondria.
    Kimball EC; Pease ME; Steinhart MR; Oglesby EN; Pitha I; Nguyen C; Quigley HA
    Exp Eye Res; 2017 Jul; 160():106-115. PubMed ID: 28414059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death.
    Urcola JH; Hernández M; Vecino E
    Exp Eye Res; 2006 Aug; 83(2):429-37. PubMed ID: 16682027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of cyclodialysis to limit exposure to elevated intraocular pressure in rat glaucoma models.
    Johnson EC; Cepurna WO; Jia L; Morrison JC
    Exp Eye Res; 2006 Jul; 83(1):51-60. PubMed ID: 16530758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A challenge to primary open-angle glaucoma including normal-pressure. Clinical problems and their scientific solution].
    Sugiyama K
    Nippon Ganka Gakkai Zasshi; 2012 Mar; 116(3):233-67; discussion 268. PubMed ID: 22568103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between retinal ganglion cell death and chronically developing inherited glaucoma in a new rat mutant.
    Thanos S; Naskar R
    Exp Eye Res; 2004 Jul; 79(1):119-29. PubMed ID: 15183107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.
    Trost A; Motloch K; Bruckner D; Schroedl F; Bogner B; Kaser-Eichberger A; Runge C; Strohmaier C; Klein B; Aigner L; Reitsamer HA
    Exp Eye Res; 2015 Jul; 136():59-71. PubMed ID: 26001526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model.
    Holcombe DJ; Lengefeld N; Gole GA; Barnett NL
    Br J Ophthalmol; 2008 May; 92(5):683-8. PubMed ID: 18296504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphologic changes in chronic high-pressure experimental glaucoma in rhesus monkeys.
    Hayreh SS; Pe'er J; Zimmerman MB
    J Glaucoma; 1999 Feb; 8(1):56-71. PubMed ID: 10084276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat, mouse, and primate models of chronic glaucoma show sustained elevation of extracellular ATP and altered purinergic signaling in the posterior eye.
    Lu W; Hu H; Sévigny J; Gabelt BT; Kaufman PL; Johnson EC; Morrison JC; Zode GS; Sheffield VC; Zhang X; Laties AM; Mitchell CH
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):3075-83. PubMed ID: 26024091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purinergic dysregulation causes hypertensive glaucoma-like optic neuropathy.
    Shinozaki Y; Kashiwagi K; Namekata K; Takeda A; Ohno N; Robaye B; Harada T; Iwata T; Koizumi S
    JCI Insight; 2017 Oct; 2(19):. PubMed ID: 28978804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for the easy assessment of pressure-dependent damage to retinal ganglion cells using cyan fluorescent protein-expressing transgenic mice.
    Tsuruga H; Murata H; Araie M; Aihara M
    Mol Vis; 2012; 18():2468-78. PubMed ID: 23077405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of inner retina dysfunction and progressive ganglion cell loss in a mouse model of glaucoma.
    Pérez de Lara MJ; Santano C; Guzmán-Aránguez A; Valiente-Soriano FJ; Avilés-Trigueros M; Vidal-Sanz M; de la Villa P; Pintor J
    Exp Eye Res; 2014 May; 122():40-9. PubMed ID: 24631335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress of chronic ocular hypertensive glaucoma in rodents].
    Liu LF; Zhang MZ
    Zhonghua Yan Ke Za Zhi; 2009 Jul; 45(7):663-8. PubMed ID: 19957696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The dawn of neuroprotective therapy for glaucomatous optic neuropathy].
    Yamamoto T
    Nippon Ganka Gakkai Zasshi; 2001 Dec; 105(12):866-83. PubMed ID: 11802458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inducible rodent models of glaucoma.
    Pang IH; Clark AF
    Prog Retin Eye Res; 2020 Mar; 75():100799. PubMed ID: 31557521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model.
    Mittag TW; Danias J; Pohorenec G; Yuan HM; Burakgazi E; Chalmers-Redman R; Podos SM; Tatton WG
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3451-9. PubMed ID: 11006238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion.
    Ruiz-Ederra J; Verkman AS
    Exp Eye Res; 2006 May; 82(5):879-84. PubMed ID: 16310189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of anesthesia, mouse strain and age on intraocular pressure and an improved murine model of experimental glaucoma.
    Cone FE; Steinhart MR; Oglesby EN; Kalesnykas G; Pease ME; Quigley HA
    Exp Eye Res; 2012 Jun; 99(1):27-35. PubMed ID: 22554836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An acute intraocular pressure challenge to assess retinal ganglion cell injury and recovery in the mouse.
    Crowston JG; Kong YX; Trounce IA; Dang TM; Fahy ET; Bui BV; Morrison JC; Chrysostomou V
    Exp Eye Res; 2015 Dec; 141():3-8. PubMed ID: 25753840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.