These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 20387849)
41. Improved CO oxidation activity in the presence and absence of hydrogen over cluster-derived PtFe/SiO2 catalysts. Siani A; Captain B; Alexeev OS; Stafyla E; Hungria AB; Midgley PA; Thomas JM; Adams RD; Amiridis MD Langmuir; 2006 May; 22(11):5160-7. PubMed ID: 16700608 [TBL] [Abstract][Full Text] [Related]
42. Plant tannin immobilized Fe Fan R; Min H; Hong X; Yi Q; Liu W; Zhang Q; Luo Z J Hazard Mater; 2019 Feb; 364():780-790. PubMed ID: 30447562 [TBL] [Abstract][Full Text] [Related]
43. Ultrathin titania coating for high-temperature stable SiO2/Pt nanocatalysts. Reddy AS; Kim S; Jeong HY; Jin S; Qadir K; Jung K; Jung CH; Yun JY; Cheon JY; Yang JM; Joo SH; Terasaki O; Park JY Chem Commun (Camb); 2011 Aug; 47(29):8412-4. PubMed ID: 21701753 [TBL] [Abstract][Full Text] [Related]
44. Palladium nanoparticles bonded to two-dimensional iron oxide graphene nanosheets: a synergistic and highly reusable catalyst for the Tsuji-Trost reaction in water and air. Liu J; Huo X; Li T; Yang Z; Xi P; Wang Z; Wang B Chemistry; 2014 Sep; 20(36):11549-55. PubMed ID: 25048270 [TBL] [Abstract][Full Text] [Related]
45. Noble metals decorated hierarchical maghemite magnetic tubes as an efficient recyclable catalyst. Purbia R; Paria S J Colloid Interface Sci; 2018 Feb; 511():463-473. PubMed ID: 29049972 [TBL] [Abstract][Full Text] [Related]
46. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. Chang YC; Chen DH J Hazard Mater; 2009 Jun; 165(1-3):664-9. PubMed ID: 19022566 [TBL] [Abstract][Full Text] [Related]
47. Magnetic Iron Oxide Nanoneedles with Hierarchical Structure for Controllable Catalytic Activity of 4-Nitrophenol Reduction. Jeon H; Lee HJ Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985931 [TBL] [Abstract][Full Text] [Related]
48. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction. Liu P; Ge X; Wang R; Ma H; Ding Y Langmuir; 2009 Jan; 25(1):561-7. PubMed ID: 19063640 [TBL] [Abstract][Full Text] [Related]
49. Probing the interface in vapor-deposited bimetallic Pd-Au and Pt-Au films by CO adsorption from the liquid phase. Ferri D; Behzadi B; Kappenberger P; Hauert R; Ernst KH; Baiker A Langmuir; 2007 Jan; 23(3):1203-8. PubMed ID: 17241033 [TBL] [Abstract][Full Text] [Related]
50. Characterization and performance of Pt-Pd-Rh cordierite monolith catalyst for selectivity catalytic oxidation of ammonia. Hung CM J Hazard Mater; 2010 Aug; 180(1-3):561-5. PubMed ID: 20451319 [TBL] [Abstract][Full Text] [Related]
51. Supported monodisperse Pt nanoparticles from [Pt3(CO)3(μ2-CO)3]5(2-) clusters for investigating support-Pt interface effect in catalysis. Chen G; Yang H; Wu B; Zheng Y; Zheng N Dalton Trans; 2013 Sep; 42(35):12699-705. PubMed ID: 23732536 [TBL] [Abstract][Full Text] [Related]
52. A selective resonance scattering assay for immunoglobulin G using Cu(II)-ascorbic acid-immunonanogold reaction. Wei X; Liang A; Zhang SS; Jiang ZL Anal Biochem; 2008 Sep; 380(2):223-8. PubMed ID: 18598667 [TBL] [Abstract][Full Text] [Related]
53. Directed self-assembly of hetero-nanoparticles using a polymer single crystal template. Zhang H; Dong B; Zhou T; Li CY Nanoscale; 2012 Dec; 4(24):7641-5. PubMed ID: 23128900 [TBL] [Abstract][Full Text] [Related]
54. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. Guo S; Dong S; Wang E ACS Nano; 2010 Jan; 4(1):547-55. PubMed ID: 20000845 [TBL] [Abstract][Full Text] [Related]
56. High electrocatalytic activity of Pt-Pd binary spherocrystals chemically assembled in vertically aligned TiO2 nanotubes. Lei Y; Zhao G; Tong X; Liu M; Li D; Geng R Chemphyschem; 2010 Jan; 11(1):276-84. PubMed ID: 19924757 [TBL] [Abstract][Full Text] [Related]
57. Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/oxide nanocatalysts. Xu L; Ma Y; Zhang Y; Jiang Z; Huang W J Am Chem Soc; 2009 Nov; 131(45):16366-7. PubMed ID: 19860417 [TBL] [Abstract][Full Text] [Related]
58. Synthesis of stable Au-SiO2 composite nanospheres with good catalytic activity and SERS effect. Wang W; Meng Z; Zhang Q; Jia X; Xi K J Colloid Interface Sci; 2014 Mar; 418():1-7. PubMed ID: 24461811 [TBL] [Abstract][Full Text] [Related]
59. In situ redox-oxidation polymerization for magnetic core-shell nanostructure with polydopamine-encapsulated-Au hybrid shell. Fang Q; Zhang J; Bai L; Duan J; Xu H; Cham-Fai Leung K; Xuan S J Hazard Mater; 2019 Apr; 367():15-25. PubMed ID: 30594714 [TBL] [Abstract][Full Text] [Related]
60. Xylanase Immobilized on Novel Multifunctional Hyperbranched Polyglycerol-Grafted Magnetic Nanoparticles: An Efficient and Robust Biocatalyst. Landarani-Isfahani A; Taheri-Kafrani A; Amini M; Mirkhani V; Moghadam M; Soozanipour A; Razmjou A Langmuir; 2015 Aug; 31(33):9219-27. PubMed ID: 26258956 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]