BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20387990)

  • 21. Process optimization for continuous extrusion wet granulation.
    Tan L; Carella AJ; Ren Y; Lo JB
    Pharm Dev Technol; 2011 Aug; 16(4):302-15. PubMed ID: 20367553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a fluid bed granulation design space using critical quality attribute weighted tolerance intervals.
    Zacour BM; Drennen JK; Anderson CA
    J Pharm Sci; 2012 Aug; 101(8):2917-29. PubMed ID: 22570275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes.
    Kukec S; Hudovornik G; Dreu R; Vrečer F
    Drug Dev Ind Pharm; 2014 Jul; 40(7):952-9. PubMed ID: 23662716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug distribution in wet granulation: foam versus spray.
    Tan MX; Nguyen TH; Hapgood KP
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1389-400. PubMed ID: 23057532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of some compression aids in tableting of roller compacted swellable core drug layer.
    Golchert D; Bines E; Carmody A
    Int J Pharm; 2013 Sep; 453(2):322-8. PubMed ID: 23796839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of using different grades of PVP and gelatin as binders in the fluidized bed granulation and tabletting of lactose.
    Georgakopoulos PP; Malamataris S; Dolamidis G
    Pharmazie; 1983 Apr; 38(4):240-3. PubMed ID: 6867086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous twin screw granulation: influence of process variables on granule and tablet quality.
    Vercruysse J; Córdoba Díaz D; Peeters E; Fonteyne M; Delaet U; Van Assche I; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2012 Sep; 82(1):205-11. PubMed ID: 22687571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.
    Mosig J; Kleinebudde P
    J Pharm Sci; 2015 Mar; 104(3):1108-18. PubMed ID: 25558976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Powder flow in an automated uniaxial tester and an annular shear cell: a study of pharmaceutical excipients and analytical data comparison.
    Kuentz M; Schirg P
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1476-83. PubMed ID: 23043592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating the effect of particle size and shape on high speed tableting through radial die-wall pressure monitoring.
    Abdel-Hamid S; Alshihabi F; Betz G
    Int J Pharm; 2011 Jul; 413(1-2):29-35. PubMed ID: 21515348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A microcrystalline cellulose based drug-composite formulation strategy for developing low dose drug tablets.
    Sun WJ; Sun CC
    Int J Pharm; 2020 Jul; 585():119517. PubMed ID: 32526333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attribute transmission and effects of diluents and granulation liquids on granule properties and tablet quality for high shear wet granulation and tableting process.
    Wang L; Zhao L; Hong Y; Shen L; Lin X
    Int J Pharm; 2023 Jul; 642():123177. PubMed ID: 37364781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roll compaction/dry granulation: Suitability of different binders.
    Mangal H; Kirsolak M; Kleinebudde P
    Int J Pharm; 2016 Apr; 503(1-2):213-9. PubMed ID: 26976499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Tableting technology of a dry extract from Solidago virgaurea L. with the use of silicified microcrystalline cellulose (Prosolv) and other selected auxiliary substances].
    Marczyiński Z
    Polim Med; 2009; 39(4):51-60. PubMed ID: 20099736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the Factors That Control the Quality of Mini-Tablet Compression: Flow, Particle Size, and Tooling Dimension.
    Zhao J; Yin D; Rowe J; Badawy S; Nikfar F; Pandey P
    J Pharm Sci; 2018 Apr; 107(4):1204-1208. PubMed ID: 29233726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tabletability Modulation Through Surface Engineering.
    Osei-Yeboah F; Sun CC
    J Pharm Sci; 2015 Aug; 104(8):2645-8. PubMed ID: 26059496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time assessment of critical quality attributes of a continuous granulation process.
    Fonteyne M; Vercruysse J; Díaz DC; Gildemyn D; Vervaet C; Remon JP; De Beer T
    Pharm Dev Technol; 2013 Feb; 18(1):85-97. PubMed ID: 22023327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Particle Surface Roughness on In-Die Flow and Tableting Behavior of Lactose.
    Tay JYS; Kok BWT; Liew CV; Heng PWS
    J Pharm Sci; 2019 Sep; 108(9):3011-3019. PubMed ID: 31054886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of potential novel cushioning agents for the compaction of coated multi-particulates by co-processing micronized lactose with polymers.
    Lin X; Chyi CW; Ruan KF; Feng Y; Heng PW
    Eur J Pharm Biopharm; 2011 Oct; 79(2):406-15. PubMed ID: 21458566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of Co-processed Excipient as a Novel Method to Compound Orally Disintegrating Tablets.
    Liew KB; Hii SH; Chew YL; Ming LC; Uddin AH; Sarker ZI
    Int J Pharm Compd; 2022; 26(3):255-263. PubMed ID: 35657749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.