These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
627 related articles for article (PubMed ID: 20388126)
1. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126 [TBL] [Abstract][Full Text] [Related]
2. Towards much more efficient biofuel crops - can sugarcane pave the way? Tammisola J GM Crops; 2010; 1(4):181-98. PubMed ID: 21844673 [TBL] [Abstract][Full Text] [Related]
3. Genetic and biotechnological approaches for biofuel crop improvement. Vega-Sánchez ME; Ronald PC Curr Opin Biotechnol; 2010 Apr; 21(2):218-24. PubMed ID: 20181473 [TBL] [Abstract][Full Text] [Related]
4. Prospects for increasing starch and sucrose yields for bioethanol production. Smith AM Plant J; 2008 May; 54(4):546-58. PubMed ID: 18476862 [TBL] [Abstract][Full Text] [Related]
5. RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Jung JH; Fouad WM; Vermerris W; Gallo M; Altpeter F Plant Biotechnol J; 2012 Dec; 10(9):1067-76. PubMed ID: 22924974 [TBL] [Abstract][Full Text] [Related]
6. Feedstocks for lignocellulosic biofuels. Somerville C; Youngs H; Taylor C; Davis SC; Long SP Science; 2010 Aug; 329(5993):790-2. PubMed ID: 20705851 [TBL] [Abstract][Full Text] [Related]
7. Genetic engineering of energy crops: a strategy for biofuel production in China. Xie G; Peng L J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188 [TBL] [Abstract][Full Text] [Related]
8. C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. Byrt CS; Grof CP; Furbank RT J Integr Plant Biol; 2011 Feb; 53(2):120-35. PubMed ID: 21205189 [TBL] [Abstract][Full Text] [Related]
9. Genetic engineering approaches to improve bioethanol production from maize. Torney F; Moeller L; Scarpa A; Wang K Curr Opin Biotechnol; 2007 Jun; 18(3):193-9. PubMed ID: 17399975 [TBL] [Abstract][Full Text] [Related]
10. Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Wu L; Birch RG Plant Biotechnol J; 2007 Jan; 5(1):109-17. PubMed ID: 17207261 [TBL] [Abstract][Full Text] [Related]
11. Supply and demand: sink regulation of sugar accumulation in sugarcane. McCormick AJ; Watt DA; Cramer MD J Exp Bot; 2009; 60(2):357-64. PubMed ID: 19050062 [TBL] [Abstract][Full Text] [Related]
12. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. De Souza AP; Gaspar M; Da Silva EA; Ulian EC; Waclawovsky AJ; Nishiyama MY; Dos Santos RV; Teixeira MM; Souza GM; Buckeridge MS Plant Cell Environ; 2008 Aug; 31(8):1116-27. PubMed ID: 18433443 [TBL] [Abstract][Full Text] [Related]
13. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage. Chandra A; Verma PK; Islam MN; Grisham MP; Jain R; Sharma A; Roopendra K; Singh K; Singh P; Verma I; Solomon S Plant Biol (Stuttg); 2015 May; 17(3):608-17. PubMed ID: 25311688 [TBL] [Abstract][Full Text] [Related]
14. Scientific challenges of bioethanol production in Brazil. Amorim HV; Lopes ML; de Castro Oliveira JV; Buckeridge MS; Goldman GH Appl Microbiol Biotechnol; 2011 Sep; 91(5):1267-75. PubMed ID: 21735264 [TBL] [Abstract][Full Text] [Related]
15. The potential impacts of biomass feedstock production on water resource availability. Stone KC; Hunt PG; Cantrell KB; Ro KS Bioresour Technol; 2010 Mar; 101(6):2014-25. PubMed ID: 19939667 [TBL] [Abstract][Full Text] [Related]
16. Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455 [TBL] [Abstract][Full Text] [Related]
17. Sugarcane improvement: how far can we go? Dal-Bianco M; Carneiro MS; Hotta CT; Chapola RG; Hoffmann HP; Garcia AA; Souza GM Curr Opin Biotechnol; 2012 Apr; 23(2):265-70. PubMed ID: 21983270 [TBL] [Abstract][Full Text] [Related]
18. Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink. Chong BF; Bonnett GD; Glassop D; O'Shea MG; Brumbley SM Plant Biotechnol J; 2007 Mar; 5(2):240-53. PubMed ID: 17309679 [TBL] [Abstract][Full Text] [Related]
19. Molecular breeding of switchgrass for use as a biofuel crop. Bouton JH Curr Opin Genet Dev; 2007 Dec; 17(6):553-8. PubMed ID: 17933511 [TBL] [Abstract][Full Text] [Related]
20. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks. Trumbo JL; Zhang B; Stewart CN Plant Biotechnol J; 2015 Apr; 13(3):337-54. PubMed ID: 25707745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]