These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20389004)

  • 1. Assessing the abundance and activity of denitrifying polyphosphate accumulating organisms through molecular and chemical techniques.
    Oehmen A; Carvalho G; Freitas F; Reis MA
    Water Sci Technol; 2010; 61(8):2061-8. PubMed ID: 20389004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms.
    Zeng RJ; Saunders AM; Yuan Z; Blackall LL; Keller J
    Biotechnol Bioeng; 2003 Jul; 83(2):140-8. PubMed ID: 12768619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes.
    Oehmen A; Lopez-Vazquez CM; Carvalho G; Reis MA; van Loosdrecht MC
    Water Res; 2010 Aug; 44(15):4473-86. PubMed ID: 20580055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of denitrifying activity of polyphosphate accumulating organisms in an extended ASM2d model.
    GarcĂ­a-Usach F; Ribes J; Ferrer J; Seco A
    Water Res; 2010 Oct; 44(18):5284-97. PubMed ID: 20638698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.
    Kishida N; Kim J; Tsuneda S; Sudo R
    Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denitrifying phosphorus removal: linking the process performance with the microbial community structure.
    Carvalho G; Lemos PC; Oehmen A; Reis MA
    Water Res; 2007 Nov; 41(19):4383-96. PubMed ID: 17669460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?
    Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z
    Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denitrification activity of polyphosphate accumulating organisms (PAOs) in full-scale wastewater treatment plants.
    Lanham AB; Oehmen A; Carvalho G; Saunders AM; Nielsen PH; Reis MAM
    Water Sci Technol; 2018 Dec; 78(12):2449-2458. PubMed ID: 30767910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The significance of denitrifying polyphosphate accumulating organisms in biological nutrient removal activated sludge systems.
    Hu ZR; Wentzel MC; Ekama GA
    Water Sci Technol; 2002; 46(1-2):129-38. PubMed ID: 12216614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial population response to changes of the operating conditions in a dynamic nutrient-removal sequencing batch reactor.
    Freitas F; Temudo M; Reis MA
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):199-209. PubMed ID: 16215726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative estimation of the role of denitrifying phosphate accumulating organisms in nutrient removal.
    Shoji T; Satoh H; Mino T
    Water Sci Technol; 2003; 47(11):23-9. PubMed ID: 12906267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based analysis of anaerobic acetate uptake by a mixed culture of polyphosphate-accumulating and glycogen-accumulating organisms.
    Zeng RJ; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Aug; 83(3):293-302. PubMed ID: 12783485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions.
    Kapagiannidis AG; Zafiriadis I; Aivasidis A
    Water Sci Technol; 2009; 60(10):2695-703. PubMed ID: 19923776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus removal in a membrane-assisted BNR process with focus on evolutions of PAOs and DPAOs.
    Wang ZZ; Li J; Wang CW; Wang YL
    Water Sci Technol; 2013; 68(6):1258-63. PubMed ID: 24056421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term effects of carbon source on the competition of polyphosphate accumulating organisms and glycogen accumulating organisms.
    Oehmen A; Yuan Z; Blackall LL; Keller J
    Water Sci Technol; 2004; 50(10):139-44. PubMed ID: 15656306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems.
    Oehmen A; Zeng RJ; Yuan Z; Keller J
    Biotechnol Bioeng; 2005 Jul; 91(1):43-53. PubMed ID: 15880463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms.
    Oehmen A; Yuan Z; Blackall LL; Keller J
    Biotechnol Bioeng; 2005 Jul; 91(2):162-8. PubMed ID: 15892052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous nitrogen and phosphorus removal by interactions between phosphate accumulating organisms (PAOs) and denitrifying phosphate accumulating organisms (DPAOs) in a sequencing batch reactor.
    Li H; Zhong Y; Huang H; Tan Z; Sun Y; Liu H
    Sci Total Environ; 2020 Nov; 744():140852. PubMed ID: 32702541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Oct; 84(2):170-8. PubMed ID: 12966573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms.
    Oehmen A; Teresa Vives M; Lu H; Yuan Z; Keller J
    Water Res; 2005 Sep; 39(15):3727-37. PubMed ID: 16098556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.