These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 20389356)

  • 1. Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor.
    Tuohy S; Podoleanu AG
    Opt Express; 2010 Feb; 18(4):3458-76. PubMed ID: 20389356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of LIFT for estimation of low-order modes in low-flux wavefront sensing.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2013 Jul; 21(14):16337-52. PubMed ID: 23938486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of real-time depth-resolved Shack-Hartmann measurements.
    Wang J; Podoleanu AG
    Opt Lett; 2012 Dec; 37(23):4862-4. PubMed ID: 23202071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact multireference wavefront sensor design.
    Goncharov AV; Dainty JC; Esposito S
    Opt Lett; 2005 Oct; 30(20):2721-3. PubMed ID: 16252753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning system design for large scan depth anterior segment optical coherence tomography.
    Yadav R; Ahmad K; Yoon G
    Opt Lett; 2010 Jun; 35(11):1774-6. PubMed ID: 20517412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation.
    Shi G; Wang Y; Yuan Y; Wei L; Lv F; Zhang Y
    J Biomed Opt; 2012 Dec; 17(12):120501. PubMed ID: 23192320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two partial coherence interferometry devices for ocular biometry.
    Liampa Z; Kynigopoulos M; Pallas G; Gerding H
    Klin Monbl Augenheilkd; 2010 Apr; 227(4):285-8. PubMed ID: 20408075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithm and experiment of whole-aperture wavefront reconstruction from annular subaperture Hartmann-Shack gradient data.
    Xu H; Xian H; Zhang Y
    Opt Express; 2010 Jun; 18(13):13431-43. PubMed ID: 20588474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes.
    Yoon G; Pantanelli S; Nagy LJ
    J Biomed Opt; 2006; 11(3):30502. PubMed ID: 16822048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration and testing with real turbulence of a pyramid sensor employing static modulation.
    LeDue J; Jolissaint L; Véran JP; Bradley C
    Opt Express; 2009 Apr; 17(9):7186-95. PubMed ID: 19399094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital pyramid wavefront sensor with tunable modulation.
    Akondi V; Castillo S; Vohnsen B
    Opt Express; 2013 Jul; 21(15):18261-72. PubMed ID: 23938697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography.
    Jang J; Lim J; Yu H; Choi H; Ha J; Park JH; Oh WY; Jang W; Lee S; Park Y
    Opt Express; 2013 Feb; 21(3):2890-902. PubMed ID: 23481747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor.
    Shatokhina I; Obereder A; Rosensteiner M; Ramlau R
    Appl Opt; 2013 Apr; 52(12):2640-52. PubMed ID: 23669672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The placido wavefront sensor and preliminary measurement on a mechanical eye.
    Carvalho LA; Castro JC
    Optom Vis Sci; 2006 Feb; 83(2):108-18. PubMed ID: 16501413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of optical vortex detection methods for use with a Shack-Hartmann wavefront sensor.
    Murphy K; Dainty C
    Opt Express; 2012 Feb; 20(5):4988-5002. PubMed ID: 22418303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography.
    Bonora S; Zawadzki RJ
    Opt Lett; 2013 Nov; 38(22):4801-4. PubMed ID: 24322136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical low-coherence interferometry based on broadband parametric fluorescence and amplification.
    Le Gouët J; Venkatraman D; Wong FN; Shapiro JH
    Opt Express; 2009 Sep; 17(20):17874-87. PubMed ID: 19907576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aberrations and Pupil location under corneal topography and Hartmann-Shack illumination conditions.
    Tabernero J; Atchison DA; Markwell EL
    Invest Ophthalmol Vis Sci; 2009 Apr; 50(4):1964-70. PubMed ID: 19060267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.