These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20389429)

  • 61. Miniaturized fluorescence detection chip for capillary electrophoresis immunoassay of agricultural herbicide atrazine.
    Shin KS; Kim YH; Min JA; Kwak SM; Kim SK; Yang EG; Park JH; Ju BK; Kim TS; Kang JY
    Anal Chim Acta; 2006 Jul; 573-574():164-71. PubMed ID: 17723520
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sheathless focusing of microbeads and blood cells based on hydrophoresis.
    Choi S; Song S; Choi C; Park JK
    Small; 2008 May; 4(5):634-41. PubMed ID: 18383190
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow.
    Jagannadh VK; Mackenzie MD; Pal P; Kar AK; Gorthi SS
    Opt Express; 2016 Sep; 24(19):22144-58. PubMed ID: 27661949
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 2D Spatially-Resolved Depth-Section Microfluidic Flow Velocimetry Using Dual Beam OCT.
    Hallam JM; Rigas E; Charrett TOH; Tatam RP
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32230993
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices.
    Cai H; Poon AW
    Opt Lett; 2010 Sep; 35(17):2855-7. PubMed ID: 20808347
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-accuracy three-dimensional position measurement of tens of micrometers size transparent microspheres using digital in-line holographic microscopy.
    Choi YS; Lee SJ
    Opt Lett; 2011 Nov; 36(21):4167-9. PubMed ID: 22048353
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The application of Fresnel zone plate based projection in optofluidic microscopy.
    Wu J; Cui X; Lee LM; Yang C
    Opt Express; 2008 Sep; 16(20):15595-602. PubMed ID: 18825198
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Easy monitoring of velocity fields in microfluidic devices using spatiotemporal image correlation spectroscopy.
    Travagliati M; Girardo S; Pisignano D; Beltram F; Cecchini M
    Anal Chem; 2013 Sep; 85(17):8080-4. PubMed ID: 23919917
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Low-cost fluorescence microscope with microfluidic device fabrication for optofluidic applications.
    Nagalingam N; Raghunathan A; Korede V; Overmars EFJ; Hung ST; Hartkamp R; Padding JT; Smith CS; Eral HB
    HardwareX; 2023 Jun; 14():e00415. PubMed ID: 37078005
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Single beam two-views holographic particle image velocimetry.
    Sheng J; Malkiel E; Katz J
    Appl Opt; 2003 Jan; 42(2):235-50. PubMed ID: 12546503
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection.
    Edel JB; Hill EK; de Mello AJ
    Analyst; 2001 Nov; 126(11):1953-7. PubMed ID: 11763073
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip.
    Shi YZ; Xiong S; Chin LK; Yang Y; Zhang JB; Ser W; Wu JH; Chen TN; Yang ZC; Hao YL; Liedberg B; Yap PH; Zhang Y; Liu AQ
    Lab Chip; 2017 Jul; 17(14):2443-2450. PubMed ID: 28634603
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ghost particle velocimetry: accurate 3D flow visualization using standard lab equipment.
    Buzzaccaro S; Secchi E; Piazza R
    Phys Rev Lett; 2013 Jul; 111(4):048101. PubMed ID: 23931409
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Detection of microbubble position by a digital hologram.
    Satake S; Yonemoto Y; Kikuchi T; Kunugi T
    Appl Opt; 2011 Nov; 50(31):5999-6005. PubMed ID: 22086026
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Blood Flow Velocimetry in a Microchannel During Coagulation Using Particle Image Velocimetry and Wavelet-Based Optical Flow Velocimetry.
    Kucukal E; Man Y; Gurkan UA; Schmidt BE
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33764427
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantitative analysis of antibody aggregates by combination of pinched-flow fractionation and coulter method.
    Nagatoishi S; Toyoshima T; Furukawa K; Tsumoto K
    Anal Biochem; 2023 Nov; 681():115331. PubMed ID: 37774997
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Flow profile near a wall measured by double-focus fluorescence cross-correlation.
    Lumma D; Best A; Gansen A; Feuillebois F; Rädler JO; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056313. PubMed ID: 12786278
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optical microscope for three-dimensional surface displacement and shape measurements at the microscale.
    Xia S; Pan Z; Zhang J
    Opt Lett; 2014 Jul; 39(14):4267-70. PubMed ID: 25121703
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure.
    Song C; Nguyen NT; Asundi AK; Low CL
    Opt Lett; 2011 May; 36(10):1767-9. PubMed ID: 21593884
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Selective plane illumination microscope dedicated to volumetric imaging in microfluidic chambers.
    Bissardon C; Mermet X; Quintard C; Sanjuan F; Fouillet Y; Bottausci F; Carriere M; Rivera F; Blandin P
    Biomed Opt Express; 2022 Oct; 13(10):5261-5274. PubMed ID: 36425641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.