These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20389465)

  • 21. Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays.
    Liu ZQ; Liu GQ; Zhou HQ; Liu XS; Huang K; Chen YH; Fu GL
    Nanotechnology; 2013 Apr; 24(15):155203. PubMed ID: 23519272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering.
    Demming AL; Festy F; Richards D
    J Chem Phys; 2005 May; 122(18):184716. PubMed ID: 15918756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosensing by densely packed and optically coupled plasmonic particle arrays.
    Sannomiya T; Sahoo PK; Mahcicek DI; Solak HH; Hafner C; Grieshaber D; Vörös J
    Small; 2009 Aug; 5(16):1889-96. PubMed ID: 19384877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic graded-chains as deep-subwavelength light concentrators.
    Esteves-López N; Pastawski HM; Bustos-Marún RA
    J Phys Condens Matter; 2015 Apr; 27(12):125301. PubMed ID: 25740978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneously tuning the electric and magnetic plasmonic response using capped bi-metallic nanoantennas.
    Roxworthy BJ; Toussaint KC
    Nanoscale; 2014 Feb; 6(4):2270-4. PubMed ID: 24407278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes.
    Chen HY; He CL; Wang CY; Lin MH; Mitsui D; Eguchi M; Teranishi T; Gwo S
    ACS Nano; 2011 Oct; 5(10):8223-9. PubMed ID: 21894949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Curve crossing and negative refraction in simulations of near-field coupled metallic nanoparticle arrays.
    Lopata K; Neuhauser D; Baer R
    J Chem Phys; 2007 Oct; 127(15):154714. PubMed ID: 17949198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.
    Gandman A; Mackin RT; Cohn B; Rubtsov IV; Chuntonov L
    ACS Nano; 2018 May; 12(5):4521-4528. PubMed ID: 29727565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing.
    Biris CG; Panoiu NC
    Nanotechnology; 2011 Jun; 22(23):235502. PubMed ID: 21474872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS.
    Mulvihill MJ; Ling XY; Henzie J; Yang P
    J Am Chem Soc; 2010 Jan; 132(1):268-74. PubMed ID: 20000421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media.
    Simsek E
    Opt Express; 2010 Jan; 18(2):1722-33. PubMed ID: 20174000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The fabrication of plasmonic Au nanovoid trench arrays by guided self-assembly.
    Li XV; Cole RM; Milhano CA; Bartlett PN; Soares BF; Baumberg JJ; de Groot CH
    Nanotechnology; 2009 Jul; 20(28):285309. PubMed ID: 19546497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing surface plasmons in individual Ag nanoparticles in the ultra-violet spectral regime.
    Chu MW; Sharma P; Chang CP; Liou SC; Tsai KT; Wang JK; Wang YL; Chen CH
    Nanotechnology; 2009 Jun; 20(23):235705. PubMed ID: 19451685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: enhanced robustness and wavelength tunability.
    Lin L; Zheng Y
    Opt Lett; 2015 May; 40(9):2060-3. PubMed ID: 25927784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures.
    Kim DS; Hohng SC; Malyarchuk V; Yoon YC; Ahn YH; Yee KJ; Park JW; Kim J; Park QH; Lienau C
    Phys Rev Lett; 2003 Oct; 91(14):143901. PubMed ID: 14611523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembled plasmonic nanohole arrays.
    Lee SH; Bantz KC; Lindquist NC; Oh SH; Haynes CL
    Langmuir; 2009 Dec; 25(23):13685-93. PubMed ID: 19831350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.