These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20389499)

  • 1. Heart rate monitoring via remote photoplethysmography with motion artifacts reduction.
    Cennini G; Arguel J; Akşit K; van Leest A
    Opt Express; 2010 Mar; 18(5):4867-75. PubMed ID: 20389499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage approach for detection and reduction of motion artifacts in photoplethysmographic data.
    Krishnan R; Natarajan BB; Warren S
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1867-76. PubMed ID: 20172800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contactless and continuous monitoring of heart rate based on photoplethysmography on a mattress.
    Wong MY; Pickwell-MacPherson E; Zhang YT
    Physiol Meas; 2010 Jul; 31(7):1065-74. PubMed ID: 20585149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-ear vital signs monitoring using a novel microoptic reflective sensor.
    Vogel S; Hülsbusch M; Hennig T; Blazek V; Leonhardt S
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):882-9. PubMed ID: 19846385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion artifact reduction in photoplethysmography using independent component analysis.
    Kim BS; Yoo SK
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):566-8. PubMed ID: 16532785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart Rate monitoring during physical exercise using wrist-type photoplethysmographic (PPG) signals.
    Ahmadi AK; Moradi P; Malihi M; Karimi S; Shamsollahi MB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6166-9. PubMed ID: 26737700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and reduction of motion artifacts in photoplethysmographic signals from a wrist-worn device.
    Tăuţan AM; Young A; Wentink E; Wieringa F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6146-9. PubMed ID: 26737695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection method to minimize variability in photoplethysmographic signals for timing-related measurement.
    Foo JY; Wilson SJ
    J Med Eng Technol; 2006; 30(2):93-6. PubMed ID: 16531348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion robust remote photoplethysmography in CIELab color space.
    Yang Y; Liu C; Yu H; Shao D; Tsow F; Tao N
    J Biomed Opt; 2016 Nov; 21(11):117001. PubMed ID: 27812695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography.
    Han H; Kim MJ; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1538-41. PubMed ID: 18002262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-contact, synchronous dynamic measurement of respiratory rate and heart rate based on dual sensitive regions.
    Wei B; He X; Zhang C; Wu X
    Biomed Eng Online; 2017 Jan; 16(1):17. PubMed ID: 28249595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: Motion and noise artifact detection.
    Chong JW; Dao DK; Salehizadeh SM; McManus DD; Darling CE; Chon KH; Mendelson Y
    Ann Biomed Eng; 2014 Nov; 42(11):2238-50. PubMed ID: 25092422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction.
    Zhang Z
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1902-10. PubMed ID: 26186747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the effect of subject motion to pulse rate estimation.
    Beilei Xu ; Madhu H; Mestha LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4901-4904. PubMed ID: 28269369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion artifacts reduction from PPG using cyclic moving average filter.
    Lee J
    Technol Health Care; 2014; 22(3):409-17. PubMed ID: 24704660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method.
    Han H; Kim J
    Comput Biol Med; 2012 Apr; 42(4):387-93. PubMed ID: 22206810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise.
    Zhang Z; Pi Z; Liu B
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):522-31. PubMed ID: 25252274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-contact heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unit - a pilot study.
    Aarts LA; Jeanne V; Cleary JP; Lieber C; Nelson JS; Bambang Oetomo S; Verkruysse W
    Early Hum Dev; 2013 Dec; 89(12):943-8. PubMed ID: 24135159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of long-distance heart rate monitoring using transmittance photoplethysmographic imaging (PPGI).
    Amelard R; Scharfenberger C; Kazemzadeh F; Pfisterer KJ; Lin BS; Clausi DA; Wong A
    Sci Rep; 2015 Oct; 5():14637. PubMed ID: 26440644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of motion artifact patterns in photoplethysmographic signals based on time and period domain analysis.
    Couceiro R; Carvalho P; Paiva RP; Henriques J; Muehlsteff J
    Physiol Meas; 2014 Dec; 35(12):2369-88. PubMed ID: 25390186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.