These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20389555)

  • 1. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence.
    Wynn CM; Palmacci S; Kunz RR; Rothschild M
    Opt Express; 2010 Mar; 18(6):5399-406. PubMed ID: 20389555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence.
    Wynn CM; Palmacci S; Kunz RR; Aernecke M
    Opt Express; 2011 Sep; 19(19):18671-7. PubMed ID: 21935236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliable, rapid and simple voltammetric detection of urea nitrate explosive.
    Cagan A; Lu D; Cizek K; La Belle J; Wang J
    Analyst; 2008 May; 133(5):585-7. PubMed ID: 18427677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Laser fluorescence excited spectrum of NO via alpha2sigma<--chi2pi transition].
    Zhang LS; Zhang GY; Zhao XH; Yang XD; Li Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jun; 24(6):641-3. PubMed ID: 15766171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation.
    Wynn CM; Palmacci S; Kunz RR; Clow K; Rothschild M
    Appl Opt; 2008 Nov; 47(31):5767-76. PubMed ID: 19122718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive detection of concealed explosives: depth profiling through opaque plastics by time-resolved Raman spectroscopy.
    Petterson IE; López-López M; García-Ruiz C; Gooijer C; Buijs JB; Ariese F
    Anal Chem; 2011 Nov; 83(22):8517-23. PubMed ID: 21967622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching.
    Meaney MS; McGuffin VL
    Anal Chim Acta; 2008 Mar; 610(1):57-67. PubMed ID: 18267140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary electrophoresis of the collagen crosslinks HP and LP utilizing absorbance, wavelength-resolved laser-induced fluorescence and conventional fluorescence detection.
    Veraart JR; Kok SJ; te Koppele JM; Gooijer C; Lingeman H; Velthorst NH; Brinkman UA
    Biomed Chromatogr; 1998; 12(4):226-31. PubMed ID: 9667027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. My life with LIF: a personal account of developing laser-induced fluorescence.
    Zare RN
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():1-14. PubMed ID: 22149473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tooth caries detection by curve fitting of laser-induced fluorescence emission: a comparative evaluation with reflectance spectroscopy.
    Subhash N; Thomas SS; Mallia RJ; Jose M
    Lasers Surg Med; 2005 Oct; 37(4):320-8. PubMed ID: 16180220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collection of trace evidence of explosive residues from the skin in a death due to a disguised letter bomb. The synergy between confocal laser scanning microscope and inductively coupled plasma atomic emission spectrometer analyses.
    Turillazzi E; Monaci F; Neri M; Pomara C; Riezzo I; Baroni D; Fineschi V
    Forensic Sci Int; 2010 Apr; 197(1-3):e7-12. PubMed ID: 20047806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodissociation of 3-bromo-1,1,1-trifluoro-2-propanol at 193 nm: laser-induced fluorescence detection of OH(nu'' = 0, J'').
    Indulkar YN; Upadhyaya HP; Kumar A; Waghmode SB; Naik PD
    J Phys Chem A; 2009 Jul; 113(30):8462-70. PubMed ID: 19588917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of chemical explosives using multiple photon signatures.
    Loschke KW; Dunn WL
    Appl Radiat Isot; 2010; 68(4-5):884-7. PubMed ID: 19913433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of the NO photofragment in the desorption of RDX and HMX from surfaces.
    White JD; Akin FA; Oser H; Crosley DR
    Appl Opt; 2011 Jan; 50(1):74-81. PubMed ID: 21221163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of quantum dot bioconjugates by capillary electrophoresis with laser-induced fluorescent detection.
    Huang X; Weng J; Sang F; Song X; Cao C; Ren J
    J Chromatogr A; 2006 Apr; 1113(1-2):251-4. PubMed ID: 16563405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ detection of single particles of explosive on clothing with confocal Raman microscopy.
    Ali EM; Edwards HG; Scowen IJ
    Talanta; 2009 May; 78(3):1201-3. PubMed ID: 19269494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman chemical imaging of explosive-contaminated fingerprints.
    Emmons ED; Tripathi A; Guicheteau JA; Christesen SD; Fountain AW
    Appl Spectrosc; 2009 Nov; 63(11):1197-203. PubMed ID: 19891827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.