These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 20389597)

  • 21. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Methods Cell Biol; 1998; 55():1-27. PubMed ID: 9352508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Particle tracking stereomicroscopy in optical tweezers: control of trap shape.
    Bowman R; Gibson G; Padgett M
    Opt Express; 2010 May; 18(11):11785-90. PubMed ID: 20589039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Angular and position stability of a nanorod trapped in an optical tweezers.
    Bareil PB; Sheng Y
    Opt Express; 2010 Dec; 18(25):26388-98. PubMed ID: 21164989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical forces on Mie particles in an Airy evanescent field.
    Yang Y; Zang WP; Zhao ZY; Tian JG
    Opt Express; 2012 Nov; 20(23):25681-92. PubMed ID: 23187386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical study of the properties of optical vortex array laser tweezers.
    Kuo CF; Chu SC
    Opt Express; 2013 Nov; 21(22):26418-31. PubMed ID: 24216863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bragg scattering and Brownian motion dynamics in optically induced crystals of submicron particles.
    Sapiro RE; Slama BN; Raithel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052311. PubMed ID: 23767544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic axial stabilization of counter-propagating beam-traps with feedback control.
    Tauro S; Bañas A; Palima D; Glückstad J
    Opt Express; 2010 Aug; 18(17):18217-22. PubMed ID: 20721211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential energy profile of colloidal nanoparticles in optical confinement.
    Fu J; Zhan Q; Lim MY; Li Z; Ou-Yang HD
    Opt Lett; 2013 Oct; 38(20):3995-8. PubMed ID: 24321903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fiber-optic trap-on-a-chip platform for probing low refractive index contrast biomaterials.
    Piñón TM; Castelli AR; Hirst LS; Sharping JE
    Appl Opt; 2013 Apr; 52(11):2340-5. PubMed ID: 23670765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aberration compensation for optical trapping of cells within living mice.
    Zhong MC; Wang ZQ; Li YM
    Appl Opt; 2017 Mar; 56(7):1972-1976. PubMed ID: 28248397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications.
    Sassaroli E; Li KC; O'Neill BE
    Phys Med Biol; 2009 Sep; 54(18):5541-60. PubMed ID: 19717888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A force detection technique for single-beam optical traps based on direct measurement of light momentum changes.
    Farré A; Montes-Usategui M
    Opt Express; 2010 May; 18(11):11955-68. PubMed ID: 20589058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensing nanoparticles using a double nanohole optical trap.
    Kotnala A; DePaoli D; Gordon R
    Lab Chip; 2013 Oct; 13(20):4142-6. PubMed ID: 23969596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam.
    Michihata M; Hayashi T; Takaya Y
    Appl Opt; 2009 Nov; 48(32):6143-51. PubMed ID: 19904310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-beam optical traps: refractive index and size measurements of microscale objects.
    Flynn RA; Shao B; Chachisvilis M; Ozkan M; Esener SC
    Biomed Microdevices; 2005 Jun; 7(2):93-7. PubMed ID: 15940421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radiation forces acting on a Rayleigh dielectric sphere produced by highly focused elegant Hermite-cosine-Gaussian beams.
    Liu Z; Zhao D
    Opt Express; 2012 Jan; 20(3):2895-904. PubMed ID: 22330527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theory and applications of refractive index-based optical microscopy to measure protein mass transfer in spherical adsorbent particles.
    Bankston TE; Stone MC; Carta G
    J Chromatogr A; 2008 Apr; 1188(2):242-54. PubMed ID: 18353343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical trapping of microparticles with two tilted-focused laser beams.
    Meng C; Shao M; Zhang XF; Zhang LS; Chen D; Zhong MC
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37409910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.