These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 20389602)
21. FDTD simulations of localization and enhancements on fractal plasmonics nanostructures. Buil S; Laverdant J; Berini B; Maso P; Hermier JP; Quélin X Opt Express; 2012 May; 20(11):11968-75. PubMed ID: 22714182 [TBL] [Abstract][Full Text] [Related]
22. The mechanism of the polarization dependence of the optical transmission in subwavelength metal hole arrays. Zhao Q; Li C; Zhou YS; Wang HY J Phys Condens Matter; 2011 Jan; 23(1):015005. PubMed ID: 21406820 [TBL] [Abstract][Full Text] [Related]
23. Efficiency and finite size effects in enhanced transmission through subwavelength apertures. Przybilla F; Degiron A; Genet C; Ebbesen T; de Léon-Pérez F; Bravo-Abad J; García-Vidal FJ; Martín-Moreno L Opt Express; 2008 Jun; 16(13):9571-9. PubMed ID: 18575524 [TBL] [Abstract][Full Text] [Related]
24. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Francoeur M; Basu S; Petersen SJ Opt Express; 2011 Sep; 19(20):18774-88. PubMed ID: 21996819 [TBL] [Abstract][Full Text] [Related]
25. Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons. Liu H; Sun X; Yao F; Pei Y; Huang F; Yuan H; Jiang Y Opt Express; 2012 Aug; 20(17):19160-7. PubMed ID: 23038556 [TBL] [Abstract][Full Text] [Related]
26. Dipole, quadrupole and octupole plasmon resonance modes in non-concentric nanocrescent/nanodisk structure: local field enhancement in the visible and near infrared regions. Zhang Y; Jia TQ; Zhang SA; Feng DH; Xu ZZ Opt Express; 2012 Jan; 20(3):2924-31. PubMed ID: 22330530 [TBL] [Abstract][Full Text] [Related]
27. Scattering losses in multidielectric structures designed for giant optical field enhancement. Lereu AL; Zerrad M; Ndiaye C; Lemarchand F; Amra C Appl Opt; 2014 Feb; 53(4):A412-6. PubMed ID: 24514246 [TBL] [Abstract][Full Text] [Related]
28. Influence of the dielectric substrate on the terahertz electric near-field of a hole in a metal. Guestin L; Adam AJ; Knab JR; Nagel M; Planken PC Opt Express; 2009 Sep; 17(20):17412-25. PubMed ID: 19907526 [TBL] [Abstract][Full Text] [Related]
29. Geometry dependence of field enhancement in 2D metallic photonic crystals. Paudel HP; Bayat K; Baroughi MF; May S; Galipeau DW Opt Express; 2009 Nov; 17(24):22179-89. PubMed ID: 19997464 [TBL] [Abstract][Full Text] [Related]
30. Fano interference between localized plasmons and interface reflections. Svedendahl M; Käll M ACS Nano; 2012 Aug; 6(8):7533-9. PubMed ID: 22808902 [TBL] [Abstract][Full Text] [Related]
31. Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers. Li JN; Liu TZ; Zheng HR; Gao F; Dong J; Zhang ZL; Zhang ZY Opt Express; 2013 Jul; 21(14):17176-85. PubMed ID: 23938564 [TBL] [Abstract][Full Text] [Related]
32. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Chen Q; Cumming DR Opt Express; 2010 Jun; 18(13):14056-62. PubMed ID: 20588537 [TBL] [Abstract][Full Text] [Related]
33. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
34. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602 [TBL] [Abstract][Full Text] [Related]
35. Modeling surface plasmon-polariton gain in planar metallic structures. De Leon I; Berini P Opt Express; 2009 Oct; 17(22):20191-202. PubMed ID: 19997243 [TBL] [Abstract][Full Text] [Related]
36. Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media. Simsek E Opt Express; 2010 Jan; 18(2):1722-33. PubMed ID: 20174000 [TBL] [Abstract][Full Text] [Related]
37. Understanding near/far-field engineering of optical dimer antennas through geometry modification. Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362 [TBL] [Abstract][Full Text] [Related]
38. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial. Hu WQ; Liang EJ; Ding P; Cai GW; Xue QZ Opt Express; 2009 Nov; 17(24):21843-9. PubMed ID: 19997429 [TBL] [Abstract][Full Text] [Related]
39. Effects of the surrounding medium on the optical properties of a subwavelength aperture. Lopatiuk-Tirpak O; Fathpour S Opt Express; 2009 Dec; 17(26):23861-6. PubMed ID: 20052096 [TBL] [Abstract][Full Text] [Related]
40. A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion. Antosiewicz TJ; Apell SP; Claudio V; Käll M Opt Express; 2012 Jan; 20(1):524-33. PubMed ID: 22274374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]