These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20389726)

  • 21. Water soluble quantum dot nanoclusters: energy migration in artifical materials.
    Oh MH; Gentleman DJ; Scholes GD
    Phys Chem Chem Phys; 2006 Nov; 8(43):5079-85. PubMed ID: 17091158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer.
    He S; Li S; Wang F; Wang AY; Lin J; Tan Z
    Nanotechnology; 2013 May; 24(17):175201. PubMed ID: 23558319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures.
    Chen S; Li W; Zhang Z; Childs D; Zhou K; Orchard J; Kennedy K; Hugues M; Clarke E; Ross I; Wada O; Hogg R
    Nanoscale Res Lett; 2015 Dec; 10(1):1049. PubMed ID: 26303141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.
    Li JJ; Zhu KD
    Nanotechnology; 2010 May; 21(20):205501. PubMed ID: 20413838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversibly electroswitched quantum dot luminescence in aqueous solution.
    Jin L; Fang Y; Wen D; Wang L; Wang E; Dong S
    ACS Nano; 2011 Jun; 5(6):5249-53. PubMed ID: 21609006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategy for synthesizing quantum dot-layered double hydroxide nanocomposites and their enhanced photoluminescence and photostability.
    Cho S; Jung S; Jeong S; Bang J; Park J; Park Y; Kim S
    Langmuir; 2013 Jan; 29(1):441-7. PubMed ID: 23214974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room-temperature electroluminescence from Si microdisks with Ge quantum dots.
    Xia J; Takeda Y; Usami N; Maruizumi T; Shiraki Y
    Opt Express; 2010 Jun; 18(13):13945-50. PubMed ID: 20588527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum dots for light emitting diodes.
    Qasim K; Lei W; Li Q
    J Nanosci Nanotechnol; 2013 May; 13(5):3173-85. PubMed ID: 23858829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process.
    Zhang ZY; Hogg RA; Xu B; Jin P; Wang ZG
    Opt Lett; 2008 Jun; 33(11):1210-2. PubMed ID: 18516176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency.
    Barkhouse DA; Pattantyus-Abraham AG; Levina L; Sargent EH
    ACS Nano; 2008 Nov; 2(11):2356-62. PubMed ID: 19206403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and characteristics of broad-area light-emitting diode based on nanopatterned quantum dots.
    Wong PS; Liang BL; Tatebayashi J; Xue L; Nuntawong N; Kutty MN; Brueck SR; Huffaker DL
    Nanotechnology; 2009 Jan; 20(3):035302. PubMed ID: 19417291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrawide-bandwidth, superluminescent light-emitting diodes using InAs quantum dots of tuned height.
    Haffouz S; Barrios PJ; Normandin R; Poitras D; Lu Z
    Opt Lett; 2012 Mar; 37(6):1103-5. PubMed ID: 22446239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhomogeneous broadening and alloy intermixing in low proton dose implanted InAs/GaAs self-assembled quantum dots.
    Zaâboub Z; Ilahi B; Sfaxi L; Maaref H; Salem B; Aimez V; Morris D
    Nanotechnology; 2008 Jul; 19(28):285715. PubMed ID: 21828749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential Improvement from Cosolvents Ink Formulation to Vacuum Annealing for Ink-Jet Printed Quantum-Dot Light-Emitting Diodes.
    Han YJ; Kim DY; An K; Kang KT; Ju BK; Cho KH
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33114302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Argon-plasma-induced InAs/InGaAs/InP quantum dot intermixing.
    Yin Z; Tang X; Lee CW; Zhao J; Deny S; Chin MK
    Nanotechnology; 2006 Sep; 17(18):4664-7. PubMed ID: 21727594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth parameter optimization for fast quantum dot SESAMs.
    Maas DJ; Bellancourt AR; Hoffmann M; Rudin B; Barbarin Y; Golling M; Südmeyer T; Keller U
    Opt Express; 2008 Nov; 16(23):18646-56. PubMed ID: 19581950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates.
    Ishikawa FN; Chang HK; Ryu K; Chen PC; Badmaev A; Gomez De Arco L; Shen G; Zhou C
    ACS Nano; 2009 Jan; 3(1):73-9. PubMed ID: 19206251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition.
    Guimard D; Ishida M; Bordel D; Li L; Nishioka M; Tanaka Y; Ekawa M; Sudo H; Yamamoto T; Kondo H; Sugawara M; Arakawa Y
    Nanotechnology; 2010 Mar; 21(10):105604. PubMed ID: 20160334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra.
    Surrente A; Gallo P; Felici M; Dwir B; Rudra A; Kapon E
    Nanotechnology; 2009 Oct; 20(41):415205. PubMed ID: 19762950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs.
    Zhang F; Liu J; You G; Zhang C; Mohney SE; Park MJ; Kwak JS; Wang Y; Koleske DD; Xu J
    Opt Express; 2012 Mar; 20 Suppl 2():A333-9. PubMed ID: 22418683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.