These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 20389734)

  • 1. Conditions for highly efficient anti-Stokes conversion in gas-filled hollow core waveguides.
    Barber ZW; Renner C; Reibel RR; Wagemann SS; Babbitt WR; Roos PA
    Opt Express; 2010 Mar; 18(7):7131-7. PubMed ID: 20389734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber.
    Benabid F; Knight JC; Antonopoulos G; Russell PS
    Science; 2002 Oct; 298(5592):399-402. PubMed ID: 12376698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow-core PCF.
    Trabold BM; Abdolvand A; Euser TG; Russell PS
    Opt Express; 2013 Dec; 21(24):29711-8. PubMed ID: 24514522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen.
    Benabid F; Bouwmans G; Knight JC; Russell PS; Couny F
    Phys Rev Lett; 2004 Sep; 93(12):123903. PubMed ID: 15447265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 0.83 W, single-pass, 1.54 μm gas Raman source generated in a CH
    Li Z; Huang W; Cui Y; Wang Z; Wu W
    Opt Express; 2018 May; 26(10):12522-12529. PubMed ID: 29801290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions.
    Lucht RP; Kinnius PJ; Roy S; Gord JR
    J Chem Phys; 2007 Jul; 127(4):044316. PubMed ID: 17672699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-Stokes Raman conversion in silicon waveguides.
    Claps R; Raghunathan V; Dimitropoulos D; Jalali B
    Opt Express; 2003 Nov; 11(22):2862-72. PubMed ID: 19471406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres.
    Benabid F; Couny F; Knight JC; Birks TA; Russell PS
    Nature; 2005 Mar; 434(7032):488-91. PubMed ID: 15791251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Temperature dependence of additional peaks characteristics of single mode silica fiber stimulated Raman scattering].
    Men ZW; Sun XP; Gao SQ; Zhang XH; Wang ZM; Li ZW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1566-9. PubMed ID: 19810532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent anti-Stokes Raman scattering microscopy using a single-pass picosecond supercontinuum-seeded optical parametric amplifier.
    Chung CY; Lin YY; Wu KY; Tai WY; Chu SW; Lee YC; Hwu Y; Lee YY
    Opt Express; 2010 Mar; 18(6):6116-22. PubMed ID: 20389633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Control of Transient Raman Scattering Using Buffered Hydrogen in Hollow-Core Photonic Crystal Fibers.
    Hosseini P; Novoa D; Abdolvand A; Russell PSJ
    Phys Rev Lett; 2017 Dec; 119(25):253903. PubMed ID: 29303338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm.
    Chen Y; Wang Z; Li Z; Huang W; Xi X; Lu Q
    Opt Express; 2017 Aug; 25(17):20944-20949. PubMed ID: 29041770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO(4) crystal.
    Erný P; Jelínková H
    Opt Lett; 2002 Mar; 27(5):360-2. PubMed ID: 18007803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8  μm.
    Li Z; Huang W; Cui Y; Wang Z
    Opt Lett; 2018 Oct; 43(19):4671-4674. PubMed ID: 30272711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser.
    Leonhardt R; Biedermann BR; Wieser W; Huber R
    Opt Express; 2009 Sep; 17(19):16801-8. PubMed ID: 19770897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency Raman conversion in SF
    Edelstein S; Ishaaya AA
    Opt Lett; 2019 Dec; 44(23):5856-5859. PubMed ID: 31774797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient counter-propagation-beams narrow-band ultraviolet frequency conversion in a quantum gas.
    Zhu C; Deng L; Hagley EW
    Opt Lett; 2013 May; 38(10):1718-20. PubMed ID: 23938922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbative theory and modeling of electronic-resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy of nitric oxide.
    Kuehner JP; Naik SV; Kulatilaka WD; Chai N; Laurendeau NM; Lucht RP; Scully MO; Roy S; Patnaik AK; Gord JR
    J Chem Phys; 2008 May; 128(17):174308. PubMed ID: 18465923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy.
    Frontiera RR; Shim S; Mathies RA
    J Chem Phys; 2008 Aug; 129(6):064507. PubMed ID: 18715085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SRS in the strong-focusing regime for Raman amplifiers.
    McKay A; Mildren RP; Coutts DW; Spence DJ
    Opt Express; 2015 Jun; 23(11):15012-20. PubMed ID: 26072857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.