These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20389752)

  • 1. Efficient computation of photonic crystal waveguide modes with dispersive material.
    Schmidt K; Kappeler R
    Opt Express; 2010 Mar; 18(7):7307-22. PubMed ID: 20389752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1D photonic band formation and photon localization in finite-size photonic-crystal waveguides.
    Atlasov KA; Felici M; Karlsson KF; Gallo P; Rudra A; Dwir B; Kapon E
    Opt Express; 2010 Jan; 18(1):117-22. PubMed ID: 20173830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide.
    Ferrier L; Romeo PR; Letartre X; Drouard E; Viktorovitch P
    Opt Express; 2010 Jul; 18(15):16162-74. PubMed ID: 20721002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration.
    Ebnali-Heidari M; Monat C; Grillet C; Moravvej-Farshi MK
    Opt Express; 2009 Sep; 17(20):18340-53. PubMed ID: 19907625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of complex modes in photonic crystal waveguides using the phase variation in characteristic coefficients.
    Hosseinnia AH; Khavasi A; Sarrafi P; Mehrany K
    Opt Lett; 2012 Aug; 37(15):3078-80. PubMed ID: 22859091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of piezoelectric excitation of guided waves using waveguide finite elements.
    Loveday PW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2038-45. PubMed ID: 18986900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic-crystal structures with polarized-wave-guiding property and their applications in the mid and far infrared wave bands.
    Jin X; Sesay M; Ouyang Z; Liu Q; Lin M; Tao K; Zhang D
    Opt Express; 2013 Oct; 21(21):25592-606. PubMed ID: 24150399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of a 200 GHz Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with optimized photonic crystal reflectors.
    Shi Y; Fu X; Dai D
    Appl Opt; 2010 Sep; 49(26):4859-65. PubMed ID: 20830173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization-independent waveguiding with annular photonic crystals.
    Cicek A; Ulug B
    Opt Express; 2009 Sep; 17(20):18381-6. PubMed ID: 19907629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modes of shallow photonic crystal waveguides: semi-analytic treatment.
    Mahmoodian S; Poulton CG; Dossou KB; McPhedran RC; Botten LC; de Sterke CM
    Opt Express; 2009 Oct; 17(22):19629-43. PubMed ID: 19997183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission through a Kerr barrier in photonic crystal waveguides: dispersion effects.
    McGurn AR
    J Phys Condens Matter; 2009 Dec; 21(48):485302. PubMed ID: 21832512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-hole waveguides in silicon photonic crystal slabs: efficient use of the complete photonic bandgap.
    Bayer C; Straub M
    Appl Opt; 2009 Sep; 48(27):5050-4. PubMed ID: 19767917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing slow-light photonic crystal waveguides for four-wave mixing applications.
    Kanakis P; Kamalakis T; Sphicopoulos T
    Opt Lett; 2014 Feb; 39(4):884-7. PubMed ID: 24562232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational design of one-dimensional nonlinear photonic crystals with material dispersion for efficient second-harmonic generation.
    Kim S; Kim K; Rotermund F; Lim H
    Opt Express; 2009 Oct; 17(21):19075-84. PubMed ID: 20372644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of slow light enhanced four-wave mixing in photonic crystal waveguides.
    Santagiustina M; Someda CG; Vadalà G; Combrié S; De Rossi A
    Opt Express; 2010 Sep; 18(20):21024-9. PubMed ID: 20940997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes.
    Martijn de Sterke C; Dossou KB; White TP; Botten LC; McPhedran RC
    Opt Express; 2009 Sep; 17(20):17338-43. PubMed ID: 19907519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active control of slow light on a chip with photonic crystal waveguides.
    Vlasov YA; O'Boyle M; Hamann HF; McNab SJ
    Nature; 2005 Nov; 438(7064):65-9. PubMed ID: 16267549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of group index of lossy photonic crystal waveguides.
    Debnath A; Debnath K; O'Faolain L
    Opt Lett; 2015 Jan; 40(2):193-6. PubMed ID: 25679842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous propagation loss in photonic crystal waveguides.
    Li ZY; Ho KM
    Phys Rev Lett; 2004 Feb; 92(6):063904. PubMed ID: 14995241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing.
    Kim HJ; Park I; O BH; Park SG; Lee el-H; Lee SG
    Opt Express; 2004 Nov; 12(23):5625-33. PubMed ID: 19488196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.