These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20389833)

  • 1. Variable-wavelength solar-blind Raman lidar for remote measurement of atmospheric water-vapor concentration and temperature.
    Petri K; Salik A; Cooney J
    Appl Opt; 1982 Apr; 21(7):1212-8. PubMed ID: 20389833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.
    Whiteman DN; Venable DD; Walker M; Cadirola M; Sakai T; Veselovskii I
    Appl Opt; 2013 Aug; 52(22):5376-84. PubMed ID: 23913054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Raman sounding of the earth's water vapor field.
    Tratt DM; Whiteman DN; Demoz BB; Farley RW; Wessel JE
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2335-41. PubMed ID: 16029854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.
    Refaat TF; Singh UN; Yu J; Petros M; Ismail S; Kavaya MJ; Davis KJ
    Appl Opt; 2015 Feb; 54(6):1387-98. PubMed ID: 25968204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere.
    Whiteman DN; Melfi SH; Ferrare RA
    Appl Opt; 1992 Jun; 31(16):3068-82. PubMed ID: 20725252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stratospheric temperature monitoring using a vibrational Raman lidar. Part 1: aerosols and ozone interferences.
    Faduilhe D; Keckhut P; Bencherif H; Robert L; Baldy S
    J Environ Monit; 2005 Apr; 7(4):357-64. PubMed ID: 15798803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote atmospheric sensing with an airborne laser absorption spectrometer.
    Menzies RT; Chahine MT
    Appl Opt; 1974 Dec; 13(12):2840-9. PubMed ID: 20134798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable 2.1-,microm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles.
    Cha S; Chan KP; Killinger DK
    Appl Opt; 1991 Sep; 30(27):3938-43. PubMed ID: 20706485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.
    Fraczek M; Behrendt A; Schmitt N
    Appl Opt; 2012 Jan; 51(2):148-66. PubMed ID: 22270512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar.
    Zeyn J; Lahmann W; Weitkamp C
    Opt Lett; 1996 Aug; 21(16):1301-3. PubMed ID: 19876332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water vapor differential absorption lidar development and evaluation.
    Browell EV; Wilkerson TD; McIlrath TJ
    Appl Opt; 1979 Oct; 18(20):3474-83. PubMed ID: 20216627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a scanning, solar-blind, water Raman lidar.
    Eichinger WE; Cooper DI; Archuletta FL; Hof D; Holtkamp DB; Karl RR; Quick CR; Tiee J
    Appl Opt; 1994 Jun; 33(18):3923-32. PubMed ID: 20935738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement.
    Bruneau D; Cazeneuve H; Loth C; Pelon J
    Appl Opt; 1991 Sep; 30(27):3930-7. PubMed ID: 20706484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system.
    Ehret G; Kiemle C; Renger W; Simmet G
    Appl Opt; 1993 Aug; 32(24):4534-51. PubMed ID: 20830116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements.
    Vaidyanathan M; Killinger DK
    Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar.
    Cooney J; Petri K; Salik A
    Appl Opt; 1985 Jan; 24(1):104-8. PubMed ID: 18216910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stratospheric ozone with added water vapor: influence of high-altitude aircraft.
    Harrison H
    Science; 1970 Nov; 170(3959):734-6. PubMed ID: 17776339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary exploration of atmospheric water vapor, liquid water and ice water by ultraviolet Raman lidar.
    Yufeng W; Qing W; Dengxin H
    Opt Express; 2019 Dec; 27(25):36311-36328. PubMed ID: 31873413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ozone and water-vapor measurements by Raman lidar in the planetary boundary layer: error sources and field measurements.
    Lazzarotto B; Frioud M; Larchevêque G; Mitev V; Quaglia P; Simeonov V; Thompson A; van den Bergh H; Calpini B
    Appl Opt; 2001 Jun; 40(18):2985-97. PubMed ID: 18357316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman-lidar humidity sounding of the atmospheric boundary-layer.
    Pourny JC; Renaut D; Orszag A
    Appl Opt; 1979 Apr; 18(8):1141-8. PubMed ID: 20208900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.