These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 20389904)
1. Role of various water clusters in IR absorption in the 8-14-microm window region. Suck SH; Wetmore AE; Chen TS; Kassner JL Appl Opt; 1982 May; 21(9):1610-4. PubMed ID: 20389904 [TBL] [Abstract][Full Text] [Related]
2. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines. Ma Q; Tipping RH; Leforestier C J Chem Phys; 2008 Mar; 128(12):124313. PubMed ID: 18376925 [TBL] [Abstract][Full Text] [Related]
3. Water cluster interpretation of IR absorption spectra in the 8-14-microm wavelength region. Suck SH; Kassner JL; Yamaguchi Y Appl Opt; 1979 Aug; 18(15):2609-17. PubMed ID: 20212719 [TBL] [Abstract][Full Text] [Related]
4. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption. Leforestier C; Tipping RH; Ma Q J Chem Phys; 2010 Apr; 132(16):164302. PubMed ID: 20441270 [TBL] [Abstract][Full Text] [Related]
5. Far-infrared absorption of water clusters by first-principles molecular dynamics. Lee MS; Baletto F; Kanhere DG; Scandolo S J Chem Phys; 2008 Jun; 128(21):214506. PubMed ID: 18537432 [TBL] [Abstract][Full Text] [Related]
6. Distinctive IR signature of CO(3)(*-) and CO(3)(2-) hydrated clusters: a theoretical study. Pathak AK; Maity DK J Phys Chem A; 2009 Dec; 113(48):13443-7. PubMed ID: 19886648 [TBL] [Abstract][Full Text] [Related]
7. Mass spectrometry of ion-induced water clusters: an explanation of the infrared continuum absorption. Carlon HR; Harden CS Appl Opt; 1980 Jun; 19(11):1776-86. PubMed ID: 20221124 [TBL] [Abstract][Full Text] [Related]
8. Infrared water vapor continuum absorption at atmospheric temperatures. Cormier JG; Hodges JT; Drummond JR J Chem Phys; 2005 Mar; 122(11):114309. PubMed ID: 15836217 [TBL] [Abstract][Full Text] [Related]
9. Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum. Scribano Y; Leforestier C J Chem Phys; 2007 Jun; 126(23):234301. PubMed ID: 17600414 [TBL] [Abstract][Full Text] [Related]
10. Pressure dependence of the water vapor continuum absorption in the 3.5-4.0-microm region. Watkins WR; White KO; Bower LR; Sojka BZ Appl Opt; 1979 Apr; 18(8):1149-60. PubMed ID: 20208901 [TBL] [Abstract][Full Text] [Related]
11. Water vapor continuum absorption in the 3.5-4.0-microm region. White KO; Watkins WR; Bruce CW; Meredith RE; Smith FG Appl Opt; 1978 Sep; 17(17):2711-20. PubMed ID: 20203855 [TBL] [Abstract][Full Text] [Related]
12. Global minimum-energy structure and spectroscopic properties of I2(*-) x n H2O clusters: a Monte Carlo simulated annealing study. Pathak AK; Mukherjee T; Maity DK Chemphyschem; 2010 Jan; 11(1):220-8. PubMed ID: 19943270 [TBL] [Abstract][Full Text] [Related]
13. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters. Pathak AK; Mukherjee T; Maity DK J Chem Phys; 2007 Jul; 127(4):044304. PubMed ID: 17672687 [TBL] [Abstract][Full Text] [Related]
14. The absorption spectrum of water near 750 nm by CW-CRDS: contribution to the search of water dimer absorption. Kassi S; Macko P; Naumenko O; Campargue A Phys Chem Chem Phys; 2005 Jun; 7(12):2460-7. PubMed ID: 15962030 [TBL] [Abstract][Full Text] [Related]