These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20390102)

  • 1. The tetrodotoxin binding site is within the outer vestibule of the sodium channel.
    Fozzard HA; Lipkind GM
    Mar Drugs; 2010 Feb; 8(2):219-34. PubMed ID: 20390102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in saxitoxin and tetrodotoxin binding revealed by mutagenesis of the Na+ channel outer vestibule.
    Penzotti JL; Fozzard HA; Lipkind GM; Dudley SC
    Biophys J; 1998 Dec; 75(6):2647-57. PubMed ID: 9826589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use-dependent block of the voltage-gated Na(+) channel by tetrodotoxin and saxitoxin: effect of pore mutations that change ionic selectivity.
    Huang CJ; Schild L; Moczydlowski EG
    J Gen Physiol; 2012 Oct; 140(4):435-54. PubMed ID: 23008436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The outer vestibule of the Na+ channel-toxin receptor and modulator of permeation as well as gating.
    Cervenka R; Zarrabi T; Lukacs P; Todt H
    Mar Drugs; 2010 Apr; 8(4):1373-93. PubMed ID: 20479982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel.
    Lipkind GM; Fozzard HA
    Biophys J; 1994 Jan; 66(1):1-13. PubMed ID: 8130328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of the C-11 hydroxyl of tetrodotoxin with the sodium channel outer vestibule.
    Choudhary G; Yotsu-Yamashita M; Shang L; Yasumoto T; Dudley SC
    Biophys J; 2003 Jan; 84(1):287-94. PubMed ID: 12524282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooccupancy of the outer vestibule of voltage-gated sodium channels by micro-conotoxin KIIIA and saxitoxin or tetrodotoxin.
    Zhang MM; Gruszczynski P; Walewska A; Bulaj G; Olivera BM; Yoshikami D
    J Neurophysiol; 2010 Jul; 104(1):88-97. PubMed ID: 20410356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The guanidinium toxin binding site on the sodium channel.
    Fozzard HA; Lipkind G
    Jpn Heart J; 1996 Sep; 37(5):683-92. PubMed ID: 8973381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tetrodotoxin receptor of voltage-gated sodium channels--perspectives from interactions with micro-conotoxins.
    French RJ; Yoshikami D; Sheets MF; Olivera BM
    Mar Drugs; 2010 Jul; 8(7):2153-61. PubMed ID: 20714429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic and antagonistic interactions between tetrodotoxin and mu-conotoxin in blocking voltage-gated sodium channels.
    Zhang MM; McArthur JR; Azam L; Bulaj G; Olivera BM; French RJ; Yoshikami D
    Channels (Austin); 2009; 3(1):32-8. PubMed ID: 19221510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mu-conotoxin-insensitive Na+ channel mutant: possible localization of a binding site at the outer vestibule.
    Dudley SC; Todt H; Lipkind G; Fozzard HA
    Biophys J; 1995 Nov; 69(5):1657-65. PubMed ID: 8580309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin.
    Lee CH; Ruben PC
    Channels (Austin); 2008; 2(6):407-12. PubMed ID: 19098433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular determinants for the subtype specificity of μ-conotoxin SIIIA targeting neuronal voltage-gated sodium channels.
    Leipold E; Markgraf R; Miloslavina A; Kijas M; Schirmeyer J; Imhof D; Heinemann SH
    Neuropharmacology; 2011; 61(1-2):105-11. PubMed ID: 21419143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KcsA crystal structure as framework for a molecular model of the Na(+) channel pore.
    Lipkind GM; Fozzard HA
    Biochemistry; 2000 Jul; 39(28):8161-70. PubMed ID: 10889022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The saxitoxin/tetrodotoxin binding site on cloned rat brain IIa Na channels is in the transmembrane electric field.
    Satin J; Limberis JT; Kyle JW; Rogart RB; Fozzard HA
    Biophys J; 1994 Sep; 67(3):1007-14. PubMed ID: 7811911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The TTX metabolite 4,9-anhydro-TTX is a highly specific blocker of the Na(v1.6) voltage-dependent sodium channel.
    Rosker C; Lohberger B; Hofer D; Steinecker B; Quasthoff S; Schreibmayer W
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C783-9. PubMed ID: 17522141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4.
    Korkosh VS; Zhorov BS; Tikhonov DB
    J Gen Physiol; 2014 Sep; 144(3):231-44. PubMed ID: 25156117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit.
    Rogers JC; Qu Y; Tanada TN; Scheuer T; Catterall WA
    J Biol Chem; 1996 Jul; 271(27):15950-62. PubMed ID: 8663157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and gating changes of the sodium channel induced by mutation of a residue in the upper third of IVS6, creating an external access path for local anesthetics.
    Sunami A; Glaaser IW; Fozzard HA
    Mol Pharmacol; 2001 Apr; 59(4):684-91. PubMed ID: 11259611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutant cycle analysis with modified saxitoxins reveals specific interactions critical to attaining high-affinity inhibition of hNaV1.7.
    Thomas-Tran R; Du Bois J
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5856-61. PubMed ID: 27162340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.