These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 20390136)

  • 61. Simultaneous particle counting and detecting on a chip.
    Wu X; Chon CH; Wang YN; Kang Y; Li D
    Lab Chip; 2008 Nov; 8(11):1943-9. PubMed ID: 18941697
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.
    Flachsbart BR; Wong K; Iannacone JM; Abante EN; Vlach RL; Rauchfuss PA; Bohn PW; Sweedler JV; Shannon MA
    Lab Chip; 2006 May; 6(5):667-74. PubMed ID: 16652183
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors.
    Irawan R; Tjin SC
    Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Laser-written photonic crystal optofluidics for electrochromatography and spectroscopy on a chip.
    Haque M; Zacharia NS; Ho S; Herman PR
    Biomed Opt Express; 2013; 4(8):1472-85. PubMed ID: 24010009
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology.
    Hellmich W; Pelargus C; Leffhalm K; Ros A; Anselmetti D
    Electrophoresis; 2005 Oct; 26(19):3689-96. PubMed ID: 16152668
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Food analysis on microfluidic devices using ultrasensitive carbon nanotubes detectors.
    Crevillén AG; Avila M; Pumera M; González MC; Escarpa A
    Anal Chem; 2007 Oct; 79(19):7408-15. PubMed ID: 17822311
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing.
    Hu TY; Wang Y; Liao CR; Wang DN
    Opt Lett; 2012 Dec; 37(24):5082-4. PubMed ID: 23258012
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication.
    Xu B; Du WQ; Li JW; Hu YL; Yang L; Zhang CC; Li GQ; Lao ZX; Ni JC; Chu JR; Wu D; Liu SL; Sugioka K
    Sci Rep; 2016 Jan; 6():19989. PubMed ID: 26818119
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sharp bends and Mach-Zehnder interferometer based on Ge-rich-SiGe waveguides on SiGe graded buffer.
    Vakarin V; Chaisakul P; Frigerio J; Ballabio A; Le Roux X; Coudevylle JR; Bouville D; Perez-Galacho D; Vivien L; Isella G; Marris-Morini D
    Opt Express; 2015 Nov; 23(24):30821-6. PubMed ID: 26698715
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fabrication of SU-8 based microchip electrophoresis with integrated electrochemical detection for neurotransmitters.
    Castaño-Alvarez M; Fernández-Abedul MT; Costa-García A; Agirregabiria M; Fernández LJ; Ruano-López JM; Barredo-Presa B
    Talanta; 2009 Nov; 80(1):24-30. PubMed ID: 19782188
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication of gravity-driven microfluidic device.
    Yamada H; Yoshida Y; Terada N; Hagihara S; Komatsu T; Terasawa A
    Rev Sci Instrum; 2008 Dec; 79(12):124301. PubMed ID: 19123582
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchips.
    Fu LM; Lee CY; Liao MH; Lin CH
    Biomed Microdevices; 2008 Feb; 10(1):73-80. PubMed ID: 17680365
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Capillarity induced solvent-actuated bonding of polymeric microfluidic devices.
    Shah JJ; Geist J; Locascio LE; Gaitan M; Rao MV; Vreeland WN
    Anal Chem; 2006 May; 78(10):3348-53. PubMed ID: 16689536
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection.
    Liu BF; Ozaki M; Hisamoto H; Luo Q; Utsumi Y; Hattori T; Terabe S
    Anal Chem; 2005 Jan; 77(2):573-8. PubMed ID: 15649055
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A simplified method for capillary embedment into microfluidic devices - exemplified by sol-gel-based preconcentration.
    Thorslund S; Johannesson N; Nikolajeff F; Bergquist J
    Electrophoresis; 2007 Dec; 28(24):4758-64. PubMed ID: 18008304
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Temperature distribution effects on micro-CFPCR performance.
    Chen PC; Nikitopoulos DE; Soper SA; Murphy MC
    Biomed Microdevices; 2008 Apr; 10(2):141-52. PubMed ID: 17896180
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantitative 3-dimensional profiling of channel networks within transparent lab-on-a-chip microreactors using a digital imaging method.
    Broadwell I; Fletcher PD; Haswell SJ; McCreedy T; Zhang X
    Lab Chip; 2001 Sep; 1(1):66-71. PubMed ID: 15100893
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.