These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20390139)

  • 61. Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion.
    Zhu M; Baffou G; Meyerbröker N; Polleux J
    ACS Nano; 2012 Aug; 6(8):7227-33. PubMed ID: 22808995
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Investigation of size-dependent cell adhesion on nanostructured interfaces.
    Kuo CW; Chueh DY; Chen P
    J Nanobiotechnology; 2014 Dec; 12():54. PubMed ID: 25477150
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Applications of scanning probe-atomic force microscopy in nanobioelectronics.
    Choi E; Kim A; Son H; Pyo SG
    J Nanosci Nanotechnol; 2014 Jan; 14(1):924-31. PubMed ID: 24730309
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Splitting a droplet for femtoliter liquid patterns and single cell isolation.
    Li H; Yang Q; Li G; Li M; Wang S; Song Y
    ACS Appl Mater Interfaces; 2015 May; 7(17):9060-5. PubMed ID: 25761507
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Control of growth and inflammatory response of macrophages and foam cells with nanotopography.
    Mohiuddin M; Pan HA; Hung YC; Huang GS
    Nanoscale Res Lett; 2012 Jul; 7(1):394. PubMed ID: 22799434
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.
    Han SW; Nakamura C; Miyake J; Chang SM; Adachi T
    J Nanosci Nanotechnol; 2014 Jan; 14(1):57-70. PubMed ID: 24730251
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Topographical control of cell-cell interaction in C6 glioma by nanodot arrays.
    Lee CH; Cheng YW; Huang GS
    Nanoscale Res Lett; 2014; 9(1):250. PubMed ID: 24917700
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Robotic adherent cell injection for characterizing cell-cell communication.
    Liu J; Siragam V; Gong Z; Chen J; Fridman MD; Leung C; Lu Z; Ru C; Xie S; Luo J; Hamilton RM; Sun Y
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):119-25. PubMed ID: 25073160
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hollow nanoneedle array and its utilization for repeated administration of biomolecules to the same cells.
    Peer E; Artzy-Schnirman A; Gepstein L; Sivan U
    ACS Nano; 2012 Jun; 6(6):4940-6. PubMed ID: 22632128
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Diagnostic Implementation of Fast and Selective Integrin-Mediated Adhesion of Cancer Cells on Functionalized Zeolite L Monolayers.
    Greco A; Maggini L; De Cola L; De Marco R; Gentilucci L
    Bioconjug Chem; 2015 Sep; 26(9):1873-8. PubMed ID: 26260887
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A DNA Nanodevice Simultaneously Activating the EGFR and Integrin for Enhancing Cytoskeletal Activity and Cancer Cell Treatment.
    Baig MMFA; Zhang QW; Younis MR; Xia XH
    Nano Lett; 2019 Oct; 19(10):7503-7513. PubMed ID: 31515999
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Size-Tunable Organic Nanodot Arrays: A Versatile Platform for Manipulating and Imaging Cells.
    Pi F; Dillard P; Alameddine R; Benard E; Wahl A; Ozerov I; Charrier A; Limozin L; Sengupta K
    Nano Lett; 2015 Aug; 15(8):5178-84. PubMed ID: 26161675
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Magnetic Properties of Epitaxially Grown SrRuO
    Laskin G; Wang H; Boschker H; Braun W; Srot V; van Aken PA; Mannhart J
    Nano Lett; 2019 Feb; 19(2):1131-1135. PubMed ID: 30645131
    [TBL] [Abstract][Full Text] [Related]  

  • 74. "Mazel tov" usage.
    Greenberg BD
    Science; 1986 Nov; 234(4778):803. PubMed ID: 17758089
    [No Abstract]   [Full Text] [Related]  

  • 75. Application of Nanotechnology in Cancer Diagnosis and Therapy - A Mini-Review.
    Jin C; Wang K; Oppong-Gyebi A; Hu J
    Int J Med Sci; 2020; 17(18):2964-2973. PubMed ID: 33173417
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Spatiotemporal Control of Osteoblast Cell Growth, Behavior, and Function Dictated by Nanostructured Stainless Steel Artificial Microenvironments.
    Dhawan U; Pan HA; Shie MJ; Chu YH; Huang GS; Chen PC; Chen WL
    Nanoscale Res Lett; 2017 Dec; 12(1):86. PubMed ID: 28168610
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness.
    Dhawan U; Wang SM; Chu YH; Huang GS; Lin YR; Hung YC; Chen WL
    Sci Rep; 2016 Aug; 6():31998. PubMed ID: 27534915
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spatial Control of Cell-Nanosurface Interactions by Tantalum Oxide Nanodots for Improved Implant Geometry.
    Dhawan U; Pan HA; Lee CH; Chu YH; Huang GS; Lin YR; Chen WL
    PLoS One; 2016; 11(6):e0158425. PubMed ID: 27362432
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A nanodevice for rapid modulation of proliferation, apoptosis, invasive ability, and cytoskeletal reorganization in cultured cells.
    Hung YC; Pan HA; Tai SM; Huang GS
    Lab Chip; 2010 May; 10(9):1189-98. PubMed ID: 20390139
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Topographic control of the growth and function of cardiomyoblast H9c2 cells using nanodot arrays.
    Pan HA; Hung YC; Sui YP; Huang GS
    Biomaterials; 2012 Jan; 33(1):20-8. PubMed ID: 21982297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.