These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20390207)

  • 1. Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine.
    Curran JM; Stokes R; Irvine E; Graham D; Amro NA; Sanedrin RG; Jamil H; Hunt JA
    Lab Chip; 2010 Jul; 10(13):1662-70. PubMed ID: 20390207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale definition of substrate materials to direct human adult stem cells towards tissue specific populations.
    Curran JM; Chen R; Stokes R; Irvine E; Graham D; Gubbins E; Delaney D; Amro N; Sanedrin R; Jamil H; Hunt JA
    J Mater Sci Mater Med; 2010 Mar; 21(3):1021-9. PubMed ID: 20037772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine.
    Curran JM; Stokes R; Irvine E; Graham D; Amro NA; Sanedrin RG; Jamil H; Hunt JA
    Lab Chip; 2017 Jun; 17(12):2135-2138. PubMed ID: 28569325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of dynamic surface chemistries to control msc isolation and function.
    Curran JM; Pu F; Chen R; Hunt JA
    Biomaterials; 2011 Jul; 32(21):4753-60. PubMed ID: 21489621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic stickers for cell- and tissue-based assays in microchannels.
    Morel M; Bartolo D; Galas JC; Dahan M; Studer V
    Lab Chip; 2009 Apr; 9(7):1011-3. PubMed ID: 19294316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defined high protein content surfaces for stem cell culture.
    Doran MR; Frith JE; Prowse AB; Fitzpatrick J; Wolvetang EJ; Munro TP; Gray PP; Cooper-White JJ
    Biomaterials; 2010 Jul; 31(19):5137-42. PubMed ID: 20378164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips.
    Ju X; Li D; Gao N; Shi Q; Hou H
    Biotechnol J; 2008 Mar; 3(3):383-91. PubMed ID: 18098120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces.
    Curran JM; Chen R; Hunt JA
    Biomaterials; 2005 Dec; 26(34):7057-67. PubMed ID: 16023712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micron/Submicron Hybrid Topography of Titanium Surfaces Influences Adhesion and Differentiation Behaviors of the Mesenchymal Stem Cells.
    Chen P; Aso T; Sasaki R; Tsutsumi Y; Ashida M; Doi H; Hanawa T
    J Biomed Nanotechnol; 2017 Mar; 13(3):324-36. PubMed ID: 29381291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress.
    Gao X; Zhang X; Tong H; Lin B; Qin J
    Electrophoresis; 2011 Nov; 32(23):3431-6. PubMed ID: 22072525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased mechanosensitivity of cells cultured on nanotopographies.
    Salvi JD; Lim JY; Donahue HJ
    J Biomech; 2010 Nov; 43(15):3058-62. PubMed ID: 20851397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate.
    Curran JM; Chen R; Hunt JA
    Biomaterials; 2006 Sep; 27(27):4783-93. PubMed ID: 16735063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells.
    Uygun BE; Stojsih SE; Matthew HW
    Tissue Eng Part A; 2009 Nov; 15(11):3499-512. PubMed ID: 19456238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of cell detachment in a microfluidic device using a thermo-responsive copolymer on a gold substrate.
    Ernst O; Lieske A; Jäger M; Lankenau A; Duschl C
    Lab Chip; 2007 Oct; 7(10):1322-9. PubMed ID: 17896017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct jetting approaches for handling stem cells.
    Mongkoldhumrongkul N; Flanagan JM; Jayasinghe SN
    Biomed Mater; 2009 Feb; 4(1):015018. PubMed ID: 19193972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orderly arrangement of hepatocyte spheroids on a microfabricated chip.
    Fukuda J; Nakazawa K
    Tissue Eng; 2005; 11(7-8):1254-62. PubMed ID: 16144461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adipogenic differentiation of mesenchymal stem cells on micropatterned polyelectrolyte surfaces.
    Kawazoe N; Guo L; Wozniak MJ; Imaizumi Y; Tateishi T; Zhang X; Chen G
    J Nanosci Nanotechnol; 2009 Jan; 9(1):230-9. PubMed ID: 19441301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The culture and differentiation of amniotic stem cells using a microfluidic system.
    Wu HW; Lin XZ; Hwang SM; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):869-81. PubMed ID: 19370418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Dynamic Hanging-Drop System for Mesenchymal Stem Cell Culture.
    Huang SW; Tzeng SC; Chen JK; Sun JS; Lin FH
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.