BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20390307)

  • 61. Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of endotoxin shock.
    Thiemermann C; Wu CC; Szabó C; Perretti M; Vane JR
    Br J Pharmacol; 1993 Sep; 110(1):177-82. PubMed ID: 7693276
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of nitric oxide in the early renal hemodynamic response after unilateral nephrectomy.
    Valdivielso JM; Pérez-Barriocanal F; García-Estañ J; López-Novoa JM
    Am J Physiol; 1999 Jun; 276(6):R1718-23. PubMed ID: 10362752
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Splanchnic hyposensitivity to glypressin in a haemorrhage/transfused rat model of portal hypertension: role of nitric oxide and bradykinin.
    Chu CJ; Wu SL; Lee FY; Wang SS; Chang FY; Lin HC; Chan CC; Lee SD
    Clin Sci (Lond); 2000 Dec; 99(6):475-82. PubMed ID: 11099389
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The impaired renal vasodilator response attributed to endothelium-derived hyperpolarizing factor in streptozotocin--induced diabetic rats is restored by 5-methyltetrahydrofolate.
    De Vriese AS; Van de Voorde J; Blom HJ; Vanhoutte PM; Verbeke M; Lameire NH
    Diabetologia; 2000 Sep; 43(9):1116-25. PubMed ID: 11043857
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of L-NAME and L-Arg on arterial blood pressure in normotensive and hypertensive streptozotocin diabetic rats.
    Costa MA; Balaszczuk AM; Domínguez A; Catanzaro O; Arranz C
    Acta Physiol Pharmacol Ther Latinoam; 1998; 48(2):59-63. PubMed ID: 9695876
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Regional differences in the arterial response to vasopressin: role of endothelial nitric oxide.
    García-Villalón AL; Garcia JL; Fernández N; Monge L; Gómez B; Diéguez G
    Br J Pharmacol; 1996 Aug; 118(7):1848-54. PubMed ID: 8842453
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Role of resveratrol in protecting vasodilatation function in septic shock rats and its mechanism.
    Zhang ZS; Zhao HL; Yang GM; Zang JT; Zheng DY; Duan CY; Kuang L; Zhu Y; Wu Y; Li T; Liu LM
    J Trauma Acute Care Surg; 2019 Dec; 87(6):1336-1345. PubMed ID: 31389921
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Prevention by insulin treatment of endothelial dysfunction but not enhanced noradrenaline-induced contractility in mesenteric resistance arteries from streptozotocin-induced diabetic rats.
    Taylor PD; Oon BB; Thomas CR; Poston L
    Br J Pharmacol; 1994 Jan; 111(1):35-41. PubMed ID: 8012717
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Experimental study of the effect of nitric oxide inhibition on mesenteric blood flow and interleukin-10 levels with a lipopolysaccharide challenge.
    Baykal A; Kavuklu B; Iskit AB; Guc MO; Hascelik G; Sayek I
    World J Surg; 2000 Sep; 24(9):1116-20. PubMed ID: 11036291
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Increasing renal blood flow: low-dose dopamine or medium-dose norepinephrine.
    Di Giantomasso D; Morimatsu H; May CN; Bellomo R
    Chest; 2004 Jun; 125(6):2260-7. PubMed ID: 15189950
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nitric oxide as a mediator of reduced arterial responsiveness in septic patients.
    Tsuneyoshi I; Kanmura Y; Yoshimura N
    Crit Care Med; 1996 Jun; 24(6):1083-6. PubMed ID: 8681578
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The effect of dehydroepiandrosterone on regional blood flow in prepubertal anaesthetized pigs.
    Molinari C; Battaglia A; Grossini E; Mary DA; Vassanelli C; Vacca G
    J Physiol; 2004 May; 557(Pt 1):307-19. PubMed ID: 15034120
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regional vascular and cardiac responses to systemic neuropeptide-Y in normal and diabetic rats.
    Hu Y; Dunbar JC
    Peptides; 1997; 18(6):809-15. PubMed ID: 9285929
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Autoregulation of renal and splanchnic blood flow following infra-renal aortic clamping is mediated by nitric oxide and vasodilator prostanoids.
    Myers SI; Turnage RH; Hernandez R; Castenada A; Valentine RJ
    J Cardiovasc Surg (Torino); 1996 Apr; 37(2):97-103. PubMed ID: 8675533
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Systemic and renal macro- and microcirculatory responses to arginine vasopressin in endotoxic rabbits.
    Albert M; Losser MR; Hayon D; Faivre V; Payen D
    Crit Care Med; 2004 Sep; 32(9):1891-8. PubMed ID: 15343018
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Regional intestinal blood flow and nitric oxide synthase inhibition during sepsis in the rat.
    Klemm K; Moody FG
    Ann Surg; 1998 Jan; 227(1):126-33. PubMed ID: 9445120
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pressor and mesenteric arterial hyporesponsiveness to angiotensin II is an early event in haemorrhagic hypotension in anaesthetised rats.
    Pieber D; Horina G; Sandner-Kiesling A; Pieber TR; Heinemann A
    Cardiovasc Res; 1999 Oct; 44(1):166-75. PubMed ID: 10615400
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nitric oxide in mesenteric vascular reactivity: a comparison between rats with normotension and hypertension.
    Chang HR; Lee RP; Wu CY; Chen HI
    Clin Exp Pharmacol Physiol; 2002 Apr; 29(4):275-80. PubMed ID: 11985535
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nitric oxide inhibition sustains vasopressin-induced vasoconstriction.
    Dworkin MJ; Carnochan P; Allen-Mersh TG
    Br J Cancer; 1995 May; 71(5):942-4. PubMed ID: 7734317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.