BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20390864)

  • 1. Assessment of methods for collecting fallout brake pad wear debris for environmental analysis.
    Sondhi A; Imhoff PT; Dentel SK; Allen HE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(2):239-49. PubMed ID: 20390864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper leaching from brake wear debris in standard extraction solutions.
    Hur J; Yim S; Schlautman MA
    J Environ Monit; 2003 Oct; 5(5):837-43. PubMed ID: 14587858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of organic ligands and pH on the leaching of copper from brake wear debris in model environmental solutions.
    Hur J; Schlautman MA; Yim S
    J Environ Monit; 2004 Jan; 6(1):89-94. PubMed ID: 14737475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle tests.
    Sanders PG; Xu N; Dalka TM; Maricq MM
    Environ Sci Technol; 2003 Sep; 37(18):4060-9. PubMed ID: 14524436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation.
    Barosova H; Chortarea S; Peikertova P; Clift MJD; Petri-Fink A; Kukutschova J; Rothen-Rutishauser B
    Arch Toxicol; 2018 Jul; 92(7):2339-2351. PubMed ID: 29748788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study.
    Kazimirova A; Peikertova P; Barancokova M; Staruchova M; Tulinska J; Vaculik M; Vavra I; Kukutschova J; Filip P; Dusinska M
    Environ Res; 2016 Jul; 148():443-449. PubMed ID: 27131798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of Hordeum vulgare and Sinapis alba germination and early growth in response to airborne low-metallic automotive brake wear debris.
    Rajhelová H; Peikertová P; Kuzníková Ľ; Motyka O; Plachá D; Mamulová Kutláková K; Čech Barabaszová K; Thomasová B; Vaculík M; Kukutschová J
    Chemosphere; 2023 Dec; 345():140540. PubMed ID: 37890799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements.
    Kwak JH; Kim H; Lee J; Lee S
    Sci Total Environ; 2013 Aug; 458-460():273-82. PubMed ID: 23664985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PM
    Liu Y; Chen H; Yin C; Federici M; Perricone G; Li Y; Margaritis D; Shen Y; Guo J; Wei T
    Chemosphere; 2022 Oct; 305():135481. PubMed ID: 35753424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes.
    Kukutschová J; Moravec P; Tomášek V; Matějka V; Smolík J; Schwarz J; Seidlerová J; Safářová K; Filip P
    Environ Pollut; 2011 Apr; 159(4):998-1006. PubMed ID: 21247681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of heavy metal particles embedded in tire dust.
    Adachi K; Tainosho Y
    Environ Int; 2004 Oct; 30(8):1009-17. PubMed ID: 15337346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airway contraction and cytokine release in isolated rat lungs induced by wear particles from the road and tire interface and road vehicle brakes.
    Nosratabadi AR; Gustafsson M; Lovén K; Ljunggren SA; Olofsson U; Abbasi S; Blomqvist G; Karlsson H; Ljungman AG; Cassee FR; Gerlofs-Nijland ME; Gudmundsson A
    Inhal Toxicol; 2023 Dec; 35(13-14):309-323. PubMed ID: 38054445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airborne asbestos concentrations associated with heavy equipment brake removal.
    Madl AK; Gaffney SH; Balzer JL; Paustenbach DJ
    Ann Occup Hyg; 2009 Nov; 53(8):839-57. PubMed ID: 19692501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytotoxicity of wear debris from traditional and innovative brake pads.
    Maiorana S; Teoldi F; Silvani S; Mancini A; Sanguineti A; Mariani F; Cella C; Lopez A; Potenza MAC; Lodi M; Dupin D; Sanvito T; Bonfanti A; Benfenati E; Baderna D
    Environ Int; 2019 Feb; 123():156-163. PubMed ID: 30529840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment.
    Straffelini G; Ciudin R; Ciotti A; Gialanella S
    Environ Pollut; 2015 Dec; 207():211-9. PubMed ID: 26408966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions.
    Zum Hagen FHF; Mathissen M; Grabiec T; Hennicke T; Rettig M; Grochowicz J; Vogt R; Benter T
    Environ Sci Technol; 2019 May; 53(9):5143-5150. PubMed ID: 30935200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements.
    Harrison RM; Jones AM; Gietl J; Yin J; Green DC
    Environ Sci Technol; 2012 Jun; 46(12):6523-9. PubMed ID: 22642836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of Oxidative Potential Caused by Brake Wear Debris in Non-Cellular Systems.
    Rajhelová H; Peikertová P; Čabanová K; Kuzníková L; Barabaszová KČ; Kutláková KM; Vaculík M; Kukutschová J
    J Nanosci Nanotechnol; 2019 May; 19(5):2869-2875. PubMed ID: 30501793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources and properties of non-exhaust particulate matter from road traffic: a review.
    Thorpe A; Harrison RM
    Sci Total Environ; 2008 Aug; 400(1-3):270-82. PubMed ID: 18635248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.