These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 20390882)
1. Phytoremediation and microbial community structure of soil from a metal-contaminated military shooting range: comparisons of field and pot experiments. Kim S; Baek K; Lee I J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):389-94. PubMed ID: 20390882 [TBL] [Abstract][Full Text] [Related]
2. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Khan AG J Trace Elem Med Biol; 2005; 18(4):355-64. PubMed ID: 16028497 [TBL] [Abstract][Full Text] [Related]
3. Rhizosphere microbial activity during phytoremediation of diesel-contaminated soil. Kim J; Kang SH; Min KA; Cho KS; Lee IS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(11):2503-16. PubMed ID: 17000542 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation of toxic metals from soil and waste water. Hooda V J Environ Biol; 2007 Apr; 28(2 Suppl):367-76. PubMed ID: 17929752 [TBL] [Abstract][Full Text] [Related]
5. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Tak HI; Ahmad F; Babalola OO Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811 [TBL] [Abstract][Full Text] [Related]
6. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals. Palmroth MR; Koskinen PE; Kaksonen AH; Münster U; Pichtel J; Puhakka JA Biodegradation; 2007 Dec; 18(6):769-82. PubMed ID: 17372705 [TBL] [Abstract][Full Text] [Related]
7. Structural development and assembly patterns of the root-associated microbiomes during phytoremediation. Chen Y; Ding Q; Chao Y; Wei X; Wang S; Qiu R Sci Total Environ; 2018 Dec; 644():1591-1601. PubMed ID: 30743871 [TBL] [Abstract][Full Text] [Related]
8. Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils. Rathod PH; Rossiter DG; Noomen MF; van der Meer FD Int J Phytoremediation; 2013; 15(5):405-26. PubMed ID: 23488168 [TBL] [Abstract][Full Text] [Related]
9. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil. Liu C; Lin H; Li B; Dong Y; Yin T Ecotoxicol Environ Saf; 2020 Oct; 202():110958. PubMed ID: 32800230 [TBL] [Abstract][Full Text] [Related]
10. Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. Fan M; Xiao X; Guo Y; Zhang J; Wang E; Chen W; Lin Y; Wei G Chemosphere; 2018 Apr; 197():729-740. PubMed ID: 29407837 [TBL] [Abstract][Full Text] [Related]
11. Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic. Wu B; Luo S; Luo H; Huang H; Xu F; Feng S; Xu H Sci Total Environ; 2022 Feb; 808():151995. PubMed ID: 34856269 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Chekol T; Vough LR; Chaney RL Environ Int; 2004 Aug; 30(6):799-804. PubMed ID: 15120198 [TBL] [Abstract][Full Text] [Related]
13. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782 [TBL] [Abstract][Full Text] [Related]
14. Assessment of dynamic microbial community structure and rhizosphere interactions during bioaugmented phytoremediation of petroleum contaminated soil by a newly designed rhizobox system. Yang KM; Poolpak T; Pokethitiyook P; Kruatrachue M Int J Phytoremediation; 2022; 24(14):1505-1517. PubMed ID: 35266855 [TBL] [Abstract][Full Text] [Related]
15. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Martínez-Alcalá I; Walker DJ; Bernal MP Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590 [TBL] [Abstract][Full Text] [Related]
16. Phytoavailability of Cr in Silene vulgaris: The role of soil, plant genotype and bacterial rhizobiome. García-Gonzalo P; Pradas Del Real AE; Pirredda M; Gismera MJ; Lobo MC; Pérez-Sanz A Ecotoxicol Environ Saf; 2017 Oct; 144():283-290. PubMed ID: 28645029 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Lin Q; Wang Z; Ma S; Chen Y Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990 [TBL] [Abstract][Full Text] [Related]
18. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Bi R; Schlaak M; Siefert E; Lord R; Connolly H Chemosphere; 2011 Apr; 83(3):318-26. PubMed ID: 21237480 [TBL] [Abstract][Full Text] [Related]
19. Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. Lin H; Liu C; Li B; Dong Y J Hazard Mater; 2021 Jan; 402():123829. PubMed ID: 33254810 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species. Lee I; Baek K; Kim H; Kim S; Kim J; Kwon Y; Chang Y; Bae B J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Nov; 42(13):2039-45. PubMed ID: 17990167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]