These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20390893)

  • 21. Metal leaching from refinery waste hydroprocessing catalyst.
    Marafi M; Rana MS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):951-959. PubMed ID: 29775124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequential-Anaerobic and Sequential-Aerobic Bioleaching of Metals (Ni, Mo, Al and V) from Spent Petroleum Catalyst in Stirred Tank Batch Reactor: A Comparative Study.
    Srichandan H; Mishra S; Singh PK; Blight K; Singh S
    Indian J Microbiol; 2022 Mar; 62(1):70-78. PubMed ID: 35068606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of bioleaching integrated with a chemical oxidation process for improved leaching of valuable metals from refinery spent hydroprocessing catalyst.
    Pathak A; Rana MS; Al-Sheeha H; Navvmani R; Al-Enezi HM; Al-Sairafi S; Mishra J
    Environ Sci Pollut Res Int; 2022 May; 29(23):34288-34301. PubMed ID: 35038087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of pulp density on the bioleaching of metals from petroleum refinery spent catalyst.
    Nagar N; Garg H; Sharma N; Awe SA; Gahan CS
    3 Biotech; 2021 Mar; 11(3):143. PubMed ID: 33708466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst.
    Santhiya D; Ting YP
    J Biotechnol; 2006 Jan; 121(1):62-74. PubMed ID: 16105700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.
    Santhiya D; Ting YP
    J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nickel recovery from spent nickel catalyst.
    Sahu KK; Agarwal A; Pandey BD
    Waste Manag Res; 2005 Apr; 23(2):148-54. PubMed ID: 15864956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recovery of palladium from a low grade palladium solution by anionic-ion exchange: kinetics, equilibrium, and metal competition.
    Bauwens J; Rocha LS; Soares HMVM
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):76907-76918. PubMed ID: 35670941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaching of petroleum refinery ash by acidophilic sulfur-oxidizing microbial cultures.
    Moura MJ; Ribeiro B; Sousa J; Costa-Ferreira M
    Bioresour Technol; 2008 Dec; 99(18):8840-3. PubMed ID: 18538565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans.
    Bayat O; Sever E; Bayat B; Arslan V; Poole C
    Appl Biochem Biotechnol; 2009 Jan; 152(1):117-26. PubMed ID: 18581266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum.
    Amiri F; Yaghmaei S; Mousavi SM
    Bioresour Technol; 2011 Jan; 102(2):1567-73. PubMed ID: 20863693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geochemical conditions influence vanadium, nickel, and molybdenum release from oil sands fluid petroleum coke.
    Abdolahnezhad M; Lindsay MBJ
    J Contam Hydrol; 2022 Feb; 245():103955. PubMed ID: 35030380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of Ni, V and Fe Leaching from a Spent Catalyst in Microwave-Assisted Acid Activation Process.
    Wang T; Ren J; Ravindra AV; Lv Y; Le T
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method.
    Park KH; Mohapatra D; Reddy BR
    J Hazard Mater; 2006 Nov; 138(2):311-6. PubMed ID: 16860466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of molybdenum recovery from sulfur removed spent catalyst using leaching and solvent extraction.
    Pradhan D; Kim DJ; Sukla LB; Pattanaik A; Lee SW
    Sci Rep; 2020 Feb; 10(1):1960. PubMed ID: 32029820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of reasons for decline of bioleaching efficiency of spent Zn-Mn batteries at high pulp densities and exploration measure for improving performance.
    Xin B; Jiang W; Li X; Zhang K; Liu C; Wang R; Wang Y
    Bioresour Technol; 2012 May; 112():186-92. PubMed ID: 22437046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass-ceramic matrix.
    Sun DD; Tay JH; Cheong HK; Leung DL; Qian G
    J Hazard Mater; 2001 Oct; 87(1-3):213-23. PubMed ID: 11566411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extremely Thermoacidophilic
    Wheaton GH; Vitko NP; Counts JA; Dulkis JA; Podolsky I; Mukherjee A; Kelly RM
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.