These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 20390913)

  • 41. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite.
    Zboril R; Andrle M; Oplustil F; Machala L; Tucek J; Filip J; Marusak Z; Sharma VK
    J Hazard Mater; 2012 Apr; 211-212():126-30. PubMed ID: 22119195
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Degradation of the endocrine-disrupting 4-nonylphenol by ferrate(VI): biodegradability and toxicity evaluation.
    Limmun W; Ishikawa N; Momotori J; Terasaki M; Sato T; Kikuchi K; Sasamoto M; Umita T; Ito A
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):18882-18890. PubMed ID: 34705206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic investigations of quinoline oxidation by ferrate(VI).
    Luo Z; Li X; Zhai J
    Environ Technol; 2016; 37(10):1249-56. PubMed ID: 26507702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics and mechanism of oxidation of tryptophan by ferrate(VI).
    Casbeer EM; Sharma VK; Zajickova Z; Dionysiou DD
    Environ Sci Technol; 2013 May; 47(9):4572-80. PubMed ID: 23517271
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ibuprofen removal from aqueous solution by in situ electrochemically generated ferrate(VI): proof-of-principle.
    Nikolić-Bujanović L; Čekerevac M; Tomić M; Zdravković M
    Water Sci Technol; 2016; 73(2):389-95. PubMed ID: 26819395
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A.
    Yang B; Ying GG; Chen ZF; Zhao JL; Peng FQ; Chen XW
    Water Res; 2014 Oct; 62():211-9. PubMed ID: 24956603
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of water quality on bacterial inactivation by ferrate(VI).
    Mao Y; Chen Z; Lu Y; Cao KF; Wu YH; Hu HY
    Environ Pollut; 2024 Jan; 341():122937. PubMed ID: 37977362
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reaction of ferrate(VI) with ABTS and self-decay of ferrate(VI): kinetics and mechanisms.
    Lee Y; Kissner R; von Gunten U
    Environ Sci Technol; 2014 May; 48(9):5154-62. PubMed ID: 24697210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High efficiency removal of organic and inorganic iodine with ferrate[Fe(VI)] through oxidation and adsorption.
    Wang XS; Ma CN; Liu YL; Wang GJ; Tang B; Song H; Gao Z; Ma J; Wang L
    Water Res; 2023 Nov; 246():120671. PubMed ID: 37804804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of the oxidation of sucralose and related carbohydrates by ferrate(VI).
    Sharma VK; Sohn M; Anquandah GA; Nesnas N
    Chemosphere; 2012 May; 87(6):644-8. PubMed ID: 22341951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.
    Lee Y; von Gunten U
    Water Res; 2012 Dec; 46(19):6177-95. PubMed ID: 22939392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sustainable ferrate oxidation: Reaction chemistry, mechanisms and removal of pollutants in wastewater.
    Dar AA; Pan B; Qin J; Zhu Q; Lichtfouse E; Usman M; Wang C
    Environ Pollut; 2021 Dec; 290():117957. PubMed ID: 34425373
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and application of sustained release microcapsules of potassium ferrate(VI) for dinitro butyl phenol (DNBP) wastewater treatment.
    Wang HL; Liu SQ; Zhang XY
    J Hazard Mater; 2009 Sep; 169(1-3):448-53. PubMed ID: 19398157
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism for the oxidation of phenol by sulfatoferrate(VI): Comparison with various oxidants.
    Peings V; Frayret J; Pigot T
    J Environ Manage; 2015 Jul; 157():287-96. PubMed ID: 25917560
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradability of hexachlorocyclohexanes in water using ferrate (VI).
    Homolková M; Hrabák P; Kolář M; Černík M
    Water Sci Technol; 2015; 71(3):405-11. PubMed ID: 25714640
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unveiling the mechanism of imidacloprid removal by ferrate(VI): Kinetics, role of oxidation and adsorption, reaction pathway and toxicity assessment.
    Wang K; Shu J; Sharma VK; Liu C; Xu X; Nesnas N; Wang H
    Sci Total Environ; 2022 Jan; 805():150383. PubMed ID: 34818785
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methodologies for the analytical determination of ferrate(VI): a review.
    Luo Z; Strouse M; Jiang JQ; Sharma VK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):453-60. PubMed ID: 21409697
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of neonicotinoids present in secondary effluents by ferrate(VI)-based oxidation processes.
    Real FJ; Acero JL; Matamoros E
    Environ Sci Pollut Res Int; 2024 Apr; 31(20):29684-29694. PubMed ID: 38589587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced ferrate oxidation of organic pollutants in the presence of Cu(II) Ion.
    Shi Z; Wang D; Gao Z; Ji X; Zhang J; Jin C
    J Hazard Mater; 2022 Jul; 433():128772. PubMed ID: 35358813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ferrate(VI) oxidation of propranolol: kinetics and products.
    Anquandah GA; Sharma VK; Panditi VR; Gardinali PR; Kim H; Oturan MA
    Chemosphere; 2013 Mar; 91(1):105-9. PubMed ID: 23305748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.