BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20390935)

  • 1. Bioremediation of chlorinated pesticide-contaminated soil using anaerobic sludges and surfactant addition.
    Baczynski TP; Pleissner D
    J Environ Sci Health B; 2010 Jan; 45(1):82-8. PubMed ID: 20390935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic biodegradation of organochlorine pesticides in contaminated soil - significance of temperature and availability.
    Baczynski TP; Pleissner D; Grotenhuis T
    Chemosphere; 2010 Jan; 78(1):22-8. PubMed ID: 19846197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil.
    Qu J; Xu Y; Ai GM; Liu Y; Liu ZP
    J Environ Manage; 2015 Sep; 161():350-357. PubMed ID: 26203874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant-enhanced solubilization and anaerobic biodegradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (DDT) in contaminated soil.
    Walters GW; Aitken MD
    Water Environ Res; 2001; 73(1):15-23. PubMed ID: 11558297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes.
    Suhara H; Adachi A; Kamei I; Maekawa N
    Biodegradation; 2011 Nov; 22(6):1075-86. PubMed ID: 21380735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DDT degradation potential of cattle manure compost.
    Purnomo AS; Koyama F; Mori T; Kondo R
    Chemosphere; 2010 Jul; 80(6):619-24. PubMed ID: 20494402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil.
    Betancur-Corredor B; Pino NJ; Cardona S; Peñuela GA
    J Environ Sci (China); 2015 Feb; 28():101-9. PubMed ID: 25662244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residues of organic chlorinated pesticides in agricultural soils of Beijing, China.
    Shi Y; Meng F; Guo F; Lu Y; Wang T; Zhang H
    Arch Environ Contam Toxicol; 2005 Jul; 49(1):37-44. PubMed ID: 15886891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia).
    Gonzalez M; Miglioranza KS; Aizpún JE; Isla FI; Peña A
    Chemosphere; 2010 Sep; 81(3):351-8. PubMed ID: 20705322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic bioventing of unsaturated zone contaminated with DDT and DNT.
    Shah JK; Sayles GD; Suidan MT; Mihopoulos P; Kaskassian S
    Water Sci Technol; 2001; 43(2):35-42. PubMed ID: 11380202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of sewage sludge and intermittent aeration strategy to the bioremediation of DDT- and HCH-contaminated soil.
    Liang Q; Lei M; Chen T; Yang J; Wan X; Yang S
    J Environ Sci (China); 2014 Aug; 26(8):1673-80. PubMed ID: 25108723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accidental organochlorine pesticide contamination of soil in Porrino, Spain.
    Vega FA; Covelo EF; Andrade ML
    J Environ Qual; 2007; 36(1):272-9. PubMed ID: 17215236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of DDT [1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane] and its metabolites DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene] and DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)-ethane]) from aged contaminated soil.
    Fitzpatrick LJ; Dean JR; Comber MH; Harradine K; Evans KP
    J Chromatogr A; 2000 Apr; 874(2):257-64. PubMed ID: 10817364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement effect of two ecological earthworm species (Eisenia foetida and Amynthas robustus E. Perrier) on removal and degradation processes of soil DDT.
    Lin Z; Li XM; Li YT; Huang DY; Dong J; Li FB
    J Environ Monit; 2012 May; 14(6):1551-8. PubMed ID: 22584803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of new bacterial transformation products of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) by gas chromatography/mass spectrometry.
    Massé R; Lalanne D; Messier F; Sylvestre M
    Biomed Environ Mass Spectrom; 1989 Sep; 18(9):741-52. PubMed ID: 2790260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of levels of organochlorine pesticides and their metabolites in the hair of a Greek rural human population.
    Tsatsakis AM; Tzatzarakis MN; Tutudaki M; Babatsikou F; Alegakis AK; Koutis C
    Hum Exp Toxicol; 2008 Dec; 27(12):933-40. PubMed ID: 19273549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi.
    Huang Y; Zhao X; Luan S
    Sci Total Environ; 2007 Oct; 385(1-3):235-41. PubMed ID: 17707073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organochlorine pesticides accumulation and degradation products in vegetation samples of a contaminated area in Galicia (NW Spain).
    Barriada-Pereira M; González-Castro MJ; Muniategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D; Fernández-Fernández E
    Chemosphere; 2005 Mar; 58(11):1571-8. PubMed ID: 15694477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Halogenated compounds in a dated sediment core of the Teltow Canal, Berlin: time related sediment contamination.
    Heim S; Ricking M; Schwarzbauer J; Littke R
    Chemosphere; 2005 Dec; 61(10):1427-38. PubMed ID: 15992860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi.
    Purnomo AS; Kamei I; Kondo R
    J Biosci Bioeng; 2008 Jun; 105(6):614-21. PubMed ID: 18640600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.