These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20390963)

  • 1. Effect of fulvic acid on the photochemical degradation of methylparathion.
    Manzanilla-Cano JA; Barceló-Quintal MH; Alcocer-Can Ldel C; Coral-Martínez TI
    J Environ Sci Health B; 2010 May; 45(4):274-8. PubMed ID: 20390963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical degradation of methylparathion in the presence of humic acid.
    Manzanilla-Cano JA; Barcelo-Quintal MH; Coral-Martinez TI
    J Environ Sci Health B; 2008 Sep; 43(7):546-52. PubMed ID: 18803108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Fe (III) on acid degradation of methylparathion.
    Manzanilla-Cano JA; Barceló-Quintal MH; Rendón-Osorio RB; Flores-Rodríguez J
    J Environ Sci Health B; 2007; 42(5):515-22. PubMed ID: 17562459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical monitoring of methylparathion degradation in an acid aqueous medium in presence of Cu(II).
    Manzanilla-Cano JA; Barceló-Quintal MH; Reyes-Salas EO
    J Environ Sci Health B; 2004 May; 39(4):577-88. PubMed ID: 15473638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical nitro-nitrite rearrangement in methyl parathion decay under tropical conditions.
    Araújo TM; Canela MC; Miranda PC
    J Environ Sci Health B; 2013; 48(4):251-9. PubMed ID: 23374042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photochemical behavior of parathion in the presence of humic acids from different origins.
    Santos FF; Martin-Neto L; Airoldi FP; Rezende MO
    J Environ Sci Health B; 2005; 40(5):721-30. PubMed ID: 16190016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosensitized degradation of caffeine: role of fulvic acids and nitrate.
    Jacobs LE; Weavers LK; Houtz EF; Chin YP
    Chemosphere; 2012 Jan; 86(2):124-9. PubMed ID: 22055309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of storage conditions and fruit processing on the degradation of parathion methyl on apples and lemons.
    Pappas C; Kyriakidis NV; Athanasopoulos PE
    Food Addit Contam; 2003 Apr; 20(4):375-9. PubMed ID: 12775480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation and by-product formation of diazinon in water during UV and UV/H(2)O(2) treatment.
    Shemer H; Linden KG
    J Hazard Mater; 2006 Aug; 136(3):553-9. PubMed ID: 16436313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameters affecting the decay of some organophosphorus pesticides: a study by high-performance liquid chromatography.
    Kaur I; Mathur RP; Tandon SN
    Biomed Chromatogr; 1997; 11(1):22-4. PubMed ID: 9051211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies of endosulfan photochemical degradations by ultraviolet light irradiation in aqueous medium.
    Barcelo-Quintal MH; Cebada-Ricalde MC; Trejo-Irigoyen AR; Rendon-Osorio RB; Manzanilla-Cano JA
    J Environ Sci Health B; 2008 Feb; 43(2):120-6. PubMed ID: 18246503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remarkably efficient hydrolysis of methylparathion catalyzed by [2-(2-pyridyl)phenyl-C,N]palladium(II) complexes.
    Kim M; Picot A; Gabbaï FP
    Inorg Chem; 2006 Jul; 45(14):5600-6. PubMed ID: 16813424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of copper and calcium-fulvic acid complexation and competition effects.
    Iglesias A; López R; Fiol S; Antelo JM; Arce F
    Water Res; 2003 Sep; 37(15):3749-55. PubMed ID: 12867343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of methyl parathion in water, by Dugesia dorotocephala.
    Amaya-Chávez A; López-López E; Galar-Martínez M; Gómez-Oliván LM; García-Fabila MM
    Bull Environ Contam Toxicol; 2009 Sep; 83(3):334-6. PubMed ID: 19424652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fulvic acid degradation using nanoparticle TiO2 in a submerged membrane photocatalysis reactor.
    Fu JF; Ji M; An DN
    J Environ Sci (China); 2005; 17(6):942-5. PubMed ID: 16465883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities.
    Wang J; Pan Z; Zhang Z; Zhang X; Wen F; Ma T; Jiang Y; Wang L; Xu L; Kang P
    Ultrason Sonochem; 2006 Sep; 13(6):493-500. PubMed ID: 16413995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation mechanism and the toxicity assessment in TiO2 photocatalysis and photolysis of parathion.
    Kim TS; Kim JK; Choi K; Stenstrom MK; Zoh KD
    Chemosphere; 2006 Feb; 62(6):926-33. PubMed ID: 16051312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and mechanism of the degradation of methyl parathion in aqueous hydrogen sulfide solution: investigation of natural organic matter effects.
    Guo X; Jans U
    Environ Sci Technol; 2006 Feb; 40(3):900-6. PubMed ID: 16509335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photolysis of fluometuron in the presence of natural water constituents.
    Halladja S; Amine-Khodja A; ter Halle A; Boulkamh A; Richard C
    Chemosphere; 2007 Nov; 69(10):1647-54. PubMed ID: 17604822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fulvic acid sorption on muscovite mica as a function of pH and time using in situ X-ray reflectivity.
    Lee SS; Fenter P; Park C; Nagy KL
    Langmuir; 2008 Aug; 24(15):7817-29. PubMed ID: 18616301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.