These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Willner I; Baron R; Willner B Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070 [TBL] [Abstract][Full Text] [Related]
3. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Chiu CS; Gwo S Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384 [TBL] [Abstract][Full Text] [Related]
4. On the relative stabilities of gold nanoparticles. Grochola G; Snook IK; Russo SP J Chem Phys; 2007 Dec; 127(22):224704. PubMed ID: 18081411 [TBL] [Abstract][Full Text] [Related]
5. Formation of metallic Ni nanoparticles on titania surfaces by chemical vapor reductive deposition method. Yoshinaga M; Takahashi H; Yamamoto K; Muramatsu A; Morikawa T J Colloid Interface Sci; 2007 May; 309(1):149-54. PubMed ID: 17362976 [TBL] [Abstract][Full Text] [Related]
6. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Narayanan R; Lipert RJ; Porter MD Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676 [TBL] [Abstract][Full Text] [Related]
7. Iron nanoparticle growth in organic superstructures. Lacroix LM; Lachaize S; Falqui A; Respaud M; Chaudret B J Am Chem Soc; 2009 Jan; 131(2):549-57. PubMed ID: 19140793 [TBL] [Abstract][Full Text] [Related]
8. Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation. Thuy NT; Yokogawa R; Yoshimura Y; Fujimoto K; Koyano M; Maenosono S Analyst; 2010 Mar; 135(3):595-602. PubMed ID: 20174716 [TBL] [Abstract][Full Text] [Related]
9. Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design. Shang L; Chen H; Deng L; Dong S Biosens Bioelectron; 2008 Feb; 23(7):1180-4. PubMed ID: 18068347 [TBL] [Abstract][Full Text] [Related]
10. Rapid synthesis of DNA-functionalized gold nanoparticles in salt solution using mononucleotide-mediated conjugation. Zhao W; Lin L; Hsing IM Bioconjug Chem; 2009 Jun; 20(6):1218-22. PubMed ID: 19425573 [TBL] [Abstract][Full Text] [Related]
11. Instantaneous synthesis of stable zerovalent metal nanoparticles under standard reaction conditions. Valle-Orta M; Diaz D; Santiago-Jacinto P; Vázquez-Olmos A; Reguera E J Phys Chem B; 2008 Nov; 112(46):14427-34. PubMed ID: 18855464 [TBL] [Abstract][Full Text] [Related]
12. A simple method of superlattice formation: step-by-step evaluation of crystal growth of gold nanoparticles through seed-growth method. Bakshi MS Langmuir; 2009 Nov; 25(21):12697-705. PubMed ID: 19618928 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of the cooperative adsorption of oppositely charged nanoparticles. Tretiakov KV; Bishop KJ; Kowalczyk B; Jaiswal A; Poggi MA; Grzybowski BA J Phys Chem A; 2009 Apr; 113(16):3799-803. PubMed ID: 19228008 [TBL] [Abstract][Full Text] [Related]
14. In situ GISAXS study of gold film growth on conducting polymer films. Kaune G; Ruderer MA; Metwalli E; Wang W; Couet S; Schlage K; Röhlsberger R; Roth SV; Müller-Buschbaum P ACS Appl Mater Interfaces; 2009 Feb; 1(2):353-60. PubMed ID: 20353223 [TBL] [Abstract][Full Text] [Related]
15. Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay. Chen CK; Huang CC; Chang HT Biosens Bioelectron; 2010 Apr; 25(8):1922-7. PubMed ID: 20129774 [TBL] [Abstract][Full Text] [Related]
16. Tuning gold nanoparticle-poly(2-hydroxyethyl methacrylate) brush interactions: from reversible swelling to capture and release. Diamanti S; Arifuzzaman S; Genzer J; Vaia RA ACS Nano; 2009 Apr; 3(4):807-18. PubMed ID: 19338284 [TBL] [Abstract][Full Text] [Related]
17. Coordination-based gold nanoparticle layers. Wanunu M; Popovitz-Biro R; Cohen H; Vaskevich A; Rubinstein I J Am Chem Soc; 2005 Jun; 127(25):9207-15. PubMed ID: 15969599 [TBL] [Abstract][Full Text] [Related]
18. In situ growth of gold nanoparticles by enzymatic glucose oxidation within alginate gel matrix. Lim SY; Lee JS; Park CB Biotechnol Bioeng; 2010 Jan; 105(1):210-4. PubMed ID: 19718653 [TBL] [Abstract][Full Text] [Related]
19. Nanoparticle-enzyme hybrid systems for nanobiotechnology. Willner I; Basnar B; Willner B FEBS J; 2007 Jan; 274(2):302-9. PubMed ID: 17181543 [TBL] [Abstract][Full Text] [Related]
20. Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery. Zhang S; Wang G; Lin X; Chatzinikolaidou M; Jennissen HP; Laub M; Uludağ H Biotechnol Prog; 2008; 24(4):945-56. PubMed ID: 19194903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]