BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20392246)

  • 21. Localization of the mutation responsible for osteopetrosis in the op rat to a 1.5-cM genetic interval on rat chromosome 10: identification of positional candidate genes by radiation hybrid mapping.
    Dobbins DE; Joe B; Hashiramoto A; Salstrom JL; Dracheva S; Ge L; Wilder RL; Remmers EF
    J Bone Miner Res; 2002 Oct; 17(10):1761-7. PubMed ID: 12369779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis.
    Wada T; Nakashima T; Oliveira-dos-Santos AJ; Gasser J; Hara H; Schett G; Penninger JM
    Nat Med; 2005 Apr; 11(4):394-9. PubMed ID: 15750601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Canonical Wnt signaling in osteoblasts is required for osteoclast differentiation.
    Glass DA; Karsenty G
    Ann N Y Acad Sci; 2006 Apr; 1068():117-30. PubMed ID: 16831912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying genes that regulate bone remodeling as potential therapeutic targets.
    Krane SM
    J Exp Med; 2005 Mar; 201(6):841-3. PubMed ID: 15781576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development.
    Okamoto M; Murai J; Yoshikawa H; Tsumaki N
    J Bone Miner Res; 2006 Jul; 21(7):1022-33. PubMed ID: 16813523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation.
    Lee SH; Rho J; Jeong D; Sul JY; Kim T; Kim N; Kang JS; Miyamoto T; Suda T; Lee SK; Pignolo RJ; Koczon-Jaremko B; Lorenzo J; Choi Y
    Nat Med; 2006 Dec; 12(12):1403-9. PubMed ID: 17128270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sclerosing bone dysplasias.
    Beighton P
    Prog Clin Biol Res; 1982; 104():173-94. PubMed ID: 7163264
    [No Abstract]   [Full Text] [Related]  

  • 28. Osteoclast-derived activity in the coupling of bone formation to resorption.
    Martin TJ; Sims NA
    Trends Mol Med; 2005 Feb; 11(2):76-81. PubMed ID: 15694870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic regulation of osteoclast development and function.
    Teitelbaum SL; Ross FP
    Nat Rev Genet; 2003 Aug; 4(8):638-49. PubMed ID: 12897775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autosomal-dominant osteopetrosis: an incidental finding.
    Rajathi M; Austin RD; Mathew P; Bharathi CS; Srivastava KC
    Indian J Dent Res; 2010; 21(4):611-4. PubMed ID: 21187637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localization of the gene for hyperostosis cranialis interna to chromosome 8p21 with analysis of three candidate genes.
    Borra VM; Waterval JJ; Stokroos RJ; Manni JJ; Van Hul W
    Calcif Tissue Int; 2013 Jul; 93(1):93-100. PubMed ID: 23640157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [How is bone formed and resorbed?-- molecular mechanisms of bone formation and resorption].
    Suda T
    Rinsho Byori; 2002 Mar; 50(3):267-72. PubMed ID: 11985054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone cell interactions and regulation by inflammatory mediators.
    Oates TW; Cochran DL
    Curr Opin Periodontol; 1996; 3():34-44. PubMed ID: 8624568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. c-fos and bone loss: a proto-oncogene regulates osteoclast lineage determination.
    Jacenko O
    Bioessays; 1995 Apr; 17(4):277-81. PubMed ID: 7741720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteopetrosis--multiple pathways for the interception of osteoclast function.
    Marks SC
    Appl Pathol; 1987; 5(3):172-83. PubMed ID: 3304355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics.
    Zaidi M; Blair HC; Moonga BS; Abe E; Huang CL
    J Bone Miner Res; 2003 Apr; 18(4):599-609. PubMed ID: 12674320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Mechanisms for formation of myeloma bone disease].
    Yata K; Abe M; Matsumoto T
    Clin Calcium; 2008 Apr; 18(4):438-46. PubMed ID: 18379024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteoclast synthesis and secretion and activation of latent transforming growth factor beta.
    Oursler MJ
    J Bone Miner Res; 1994 Apr; 9(4):443-52. PubMed ID: 8030431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding bone cell biology requires an integrated approach: reliable opportunities to study osteoclast biology in vivo.
    Cielinski MJ; Marks SC
    J Cell Biochem; 1994 Nov; 56(3):315-22. PubMed ID: 7876324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autosomal dominant osteosclerosis.
    Gelman MI
    Radiology; 1977 Nov; 125(2):289-96. PubMed ID: 198844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.