BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20392700)

  • 1. Actinidain-hydrolyzed type I collagen reveals a crucial amino acid sequence in fibril formation.
    Kunii S; Morimoto K; Nagai K; Saito T; Sato K; Tonomura B
    J Biol Chem; 2010 Jun; 285(23):17465-70. PubMed ID: 20392700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defective chicken skin collagen molecules, hydrolyzed by actinidain protease, assemble to form loosely packed fibrils that promote cell spheroid formation.
    Morimoto K; Kunii S; Tonomura B
    Int J Biol Macromol; 2021 Jan; 167():1066-1075. PubMed ID: 33220378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and structural analysis of actinidain-processed atelocollagen of yellowfin tuna (Thunnus albacares).
    Morimoto K; Kunii S; Hamano K; Tonomura B
    Biosci Biotechnol Biochem; 2004 Apr; 68(4):861-7. PubMed ID: 15118315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type I collagen N-telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis.
    Malone JP; George A; Veis A
    Proteins; 2004 Feb; 54(2):206-15. PubMed ID: 14696182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterotrimeric type I collagen C-telopeptide conformation as docked to its helix receptor.
    Malone JP; Veis A
    Biochemistry; 2004 Dec; 43(49):15358-66. PubMed ID: 15581348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible involvement of aminotelopeptide in self-assembly and thermal stability of collagen I as revealed by its removal with proteases.
    Sato K; Ebihara T; Adachi E; Kawashima S; Hattori S; Irie S
    J Biol Chem; 2000 Aug; 275(33):25870-5. PubMed ID: 10851240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders.
    Persikov AV; Pillitteri RJ; Amin P; Schwarze U; Byers PH; Brodsky B
    Hum Mutat; 2004 Oct; 24(4):330-7. PubMed ID: 15365990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Procollagen with skipping of alpha 1(I) exon 41 has lower binding affinity for alpha 1(I) C-telopeptide, impaired in vitro fibrillogenesis, and altered fibril morphology.
    Cabral WA; Fertala A; Green LK; Korkko J; Forlino A; Marini JC
    J Biol Chem; 2002 Feb; 277(6):4215-22. PubMed ID: 11706004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endo180 binds to the C-terminal region of type I collagen.
    Thomas EK; Nakamura M; Wienke D; Isacke CM; Pozzi A; Liang P
    J Biol Chem; 2005 Jun; 280(24):22596-605. PubMed ID: 15817460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of triple-helical collagen peptide models by matrix metalloproteinases.
    Lauer-Fields JL; Tuzinski KA; Shimokawa Ki; Nagase H; Fields GB
    J Biol Chem; 2000 May; 275(18):13282-90. PubMed ID: 10788434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Edman degradation sequence analysis and matrix-assisted laser desorption/ionization mass spectrometry in designing substrates for matrix metalloproteinases.
    Lauer-Fields JL; Nagase H; Fields GB
    J Chromatogr A; 2000 Aug; 890(1):117-25. PubMed ID: 10976799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location of 3-hydroxyproline residues in collagen types I, II, III, and V/XI implies a role in fibril supramolecular assembly.
    Weis MA; Hudson DM; Kim L; Scott M; Wu JJ; Eyre DR
    J Biol Chem; 2010 Jan; 285(4):2580-90. PubMed ID: 19940144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differently cross-linked and uncross-linked carboxy-terminal telopeptides of type I collagen in human mineralised bone.
    Eriksen HA; Sharp CA; Robins SP; Sassi ML; Risteli L; Risteli J
    Bone; 2004 Apr; 34(4):720-7. PubMed ID: 15050904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of urinary degradation products derived from type I collagen. Identification of a beta-isomerized Asp-Gly sequence within the C-terminal telopeptide (alpha1) region.
    Fledelius C; Johnsen AH; Cloos PA; Bonde M; Qvist P
    J Biol Chem; 1997 Apr; 272(15):9755-63. PubMed ID: 9092508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cleavage site preference of the porcine pepsin on the N-terminal α1 chain of bovine type I collagen: a focal analysis with mass spectrometry.
    Qian J; Ito S; Satoh J; Geng H; Tanaka K; Hattori S; Kojima K; Takita T; Yasukawa K
    Biosci Biotechnol Biochem; 2017 Mar; 81(3):514-522. PubMed ID: 27931164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and assembly of the heterotrimeric and homotrimeric C-propeptides of type I collagen: significance of the alpha2(I) chain.
    Malone JP; Alvares K; Veis A
    Biochemistry; 2005 Nov; 44(46):15269-79. PubMed ID: 16285730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential unfolding of alpha1 and alpha2 chains in type I collagen and collagenolysis.
    Nerenberg PS; Stultz CM
    J Mol Biol; 2008 Sep; 382(1):246-56. PubMed ID: 18644377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I.
    Gauba V; Hartgerink JD
    J Am Chem Soc; 2008 Jun; 130(23):7509-15. PubMed ID: 18481852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions.
    Gauba V; Hartgerink JD
    J Am Chem Soc; 2007 Mar; 129(9):2683-90. PubMed ID: 17295489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel 3-hydroxyproline (3Hyp)-rich motif marks the triple-helical C terminus of tendon type I collagen.
    Eyre DR; Weis M; Hudson DM; Wu JJ; Kim L
    J Biol Chem; 2011 Mar; 286(10):7732-7736. PubMed ID: 21239503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.