BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 20392739)

  • 1. Emergence of traveling waves in the zebrafish segmentation clock.
    Ishimatsu K; Takamatsu A; Takeda H
    Development; 2010 May; 137(10):1595-9. PubMed ID: 20392739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish hairy/enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites.
    Kawamura A; Koshida S; Hijikata H; Sakaguchi T; Kondoh H; Takada S
    Genes Dev; 2005 May; 19(10):1156-61. PubMed ID: 15905406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of her1 and her7 mutants reveals a spatio temporal separation of the somite clock module.
    Choorapoikayil S; Willems B; Ströhle P; Gajewski M
    PLoS One; 2012; 7(6):e39073. PubMed ID: 22723933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posterior-anterior gradient of zebrafish hes6 expression in the presomitic mesoderm is established by the combinatorial functions of the downstream enhancer and 3'UTR.
    Kawamura A; Ovara H; Ooka Y; Kinoshita H; Hoshikawa M; Nakajo K; Yokota D; Fujino Y; Higashijima S; Takada S; Yamasu K
    Dev Biol; 2016 Jan; 409(2):543-54. PubMed ID: 26596999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation clock dynamics is strongly synchronized in the forming somite.
    Bhavna R
    Dev Biol; 2020 Apr; 460(1):55-69. PubMed ID: 30926261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deadenylation by the CCR4-NOT complex contributes to the turnover of hairy-related mRNAs in the zebrafish segmentation clock.
    Fujino Y; Yamada K; Sugaya C; Ooka Y; Ovara H; Ban H; Akama K; Otosaka S; Kinoshita H; Yamasu K; Mishima Y; Kawamura A
    FEBS Lett; 2018 Oct; 592(20):3388-3398. PubMed ID: 30281784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial gradients of protein-level time delays set the pace of the traveling segmentation clock waves.
    Ay A; Holland J; Sperlea A; Devakanmalai GS; Knierer S; Sangervasi S; Stevenson A; Ozbudak EM
    Development; 2014 Nov; 141(21):4158-67. PubMed ID: 25336742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traveling wave formation in vertebrate segmentation.
    Uriu K; Morishita Y; Iwasa Y
    J Theor Biol; 2009 Apr; 257(3):385-96. PubMed ID: 19174170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise-resistant and synchronized oscillation of the segmentation clock.
    Horikawa K; Ishimatsu K; Yoshimoto E; Kondo S; Takeda H
    Nature; 2006 Jun; 441(7094):719-23. PubMed ID: 16760970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spatio-temporal model of Notch signalling in the zebrafish segmentation clock: conditions for synchronised oscillatory dynamics.
    Terry AJ; Sturrock M; Dale JK; Maroto M; Chaplain MA
    PLoS One; 2011 Feb; 6(2):e16980. PubMed ID: 21386903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wnt-regulated dynamics of positional information in zebrafish somitogenesis.
    Bajard L; Morelli LG; Ares S; Pécréaux J; Jülicher F; Oates AC
    Development; 2014 Mar; 141(6):1381-91. PubMed ID: 24595291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-lived Her proteins drive robust synchronized oscillations in the zebrafish segmentation clock.
    Ay A; Knierer S; Sperlea A; Holland J; Özbudak EM
    Development; 2013 Aug; 140(15):3244-53. PubMed ID: 23861061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Basic principle of the segmentation clock: synchronization and robustness to noise].
    Takeda H; Horikawa K
    Tanpakushitsu Kakusan Koso; 2007 Mar; 52(3):236-42. PubMed ID: 17352188
    [No Abstract]   [Full Text] [Related]  

  • 14. Setting the tempo in development: an investigation of the zebrafish somite clock mechanism.
    Giudicelli F; Ozbudak EM; Wright GJ; Lewis J
    PLoS Biol; 2007 Jun; 5(6):e150. PubMed ID: 17535112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock.
    Niwa Y; Masamizu Y; Liu T; Nakayama R; Deng CX; Kageyama R
    Dev Cell; 2007 Aug; 13(2):298-304. PubMed ID: 17681139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish.
    Akiyama R; Masuda M; Tsuge S; Bessho Y; Matsui T
    Development; 2014 Mar; 141(5):1104-9. PubMed ID: 24504340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries.
    Ozbudak EM; Lewis J
    PLoS Genet; 2008 Feb; 4(2):e15. PubMed ID: 18248098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-reduced embryos reveal a gradient scaling-based mechanism for zebrafish somite formation.
    Ishimatsu K; Hiscock TW; Collins ZM; Sari DWK; Lischer K; Richmond DL; Bessho Y; Matsui T; Megason SG
    Development; 2018 Jun; 145(11):. PubMed ID: 29769221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Completing the set of h/E(spl) cyclic genes in zebrafish: her12 and her15 reveal novel modes of expression and contribute to the segmentation clock.
    Shankaran SS; Sieger D; Schröter C; Czepe C; Pauly MC; Laplante MA; Becker TS; Oates AC; Gajewski M
    Dev Biol; 2007 Apr; 304(2):615-32. PubMed ID: 17274976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early developmental specification of the thyroid gland depends on han-expressing surrounding tissue and on FGF signals.
    Wendl T; Adzic D; Schoenebeck JJ; Scholpp S; Brand M; Yelon D; Rohr KB
    Development; 2007 Aug; 134(15):2871-9. PubMed ID: 17611226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.