BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20392799)

  • 1. Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow.
    Kim J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F273-9. PubMed ID: 20392799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.
    Yuan J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F265-72. PubMed ID: 20392798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of functional reconstructions reveals lateral and axial zonation in the renal inner medulla.
    Pannabecker TL; Henderson CS; Dantzler WH
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1306-14. PubMed ID: 18417543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
    Issaian T; Urity VB; Dantzler WH; Pannabecker TL
    Am J Physiol Regul Integr Comp Physiol; 2012 Oct; 303(7):R748-56. PubMed ID: 22914749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of microvascular water and solute exchanges in the renal medulla.
    Pallone TL; Morgenthaler TI; Deen WM
    Am J Physiol; 1984 Aug; 247(2 Pt 2):F303-15. PubMed ID: 6465323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architecture of the human renal inner medulla and functional implications.
    Wei G; Rosen S; Dantzler WH; Pannabecker TL
    Am J Physiol Renal Physiol; 2015 Oct; 309(7):F627-37. PubMed ID: 26290371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla.
    Pannabecker TL; Dantzler WH
    Am J Physiol Renal Physiol; 2007 Sep; 293(3):F696-704. PubMed ID: 17609288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The renal medullary microcirculation.
    Edwards A; Silldforff EP; Pallone TL
    Front Biosci; 2000 Jun; 5():E36-52. PubMed ID: 10833463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal medullary microcirculation: architecture and exchange.
    Michel CC
    Microcirculation; 1995 Aug; 2(2):125-39. PubMed ID: 7497165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional architecture of inner medullary vasa recta.
    Pannabecker TL; Dantzler WH
    Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1355-66. PubMed ID: 16380456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling exchange of plasma proteins between microcirculation and interstitium of the renal medulla.
    Wang W; Michel CC
    Am J Physiol Renal Physiol; 2000 Aug; 279(2):F334-44. PubMed ID: 10919854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla.
    Pannabecker TL; Dantzler WH; Layton HE; Layton AT
    Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1271-85. PubMed ID: 18495796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial compartmentation of descending and ascending thin limbs of Henle's loops.
    Westrick KY; Serack B; Dantzler WH; Pannabecker TL
    Am J Physiol Renal Physiol; 2013 Feb; 304(3):F308-16. PubMed ID: 23195680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of sodium and urea in outer medullary descending vasa recta.
    Pallone TL; Work J; Myers RL; Jamison RL
    J Clin Invest; 1994 Jan; 93(1):212-22. PubMed ID: 8282790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional implications of the three-dimensional architecture of the rat renal inner medulla.
    Layton AT; Pannabecker TL; Dantzler WH; Layton HE
    Am J Physiol Renal Physiol; 2010 Apr; 298(4):F973-87. PubMed ID: 20053796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat.
    Cowley AW
    Exp Physiol; 2000 Mar; 85 Spec No():223S-231S. PubMed ID: 10795926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitated transport in vasa recta: theoretical effects on solute exchange in the medullary microcirculation.
    Edwards A; Pallone TL
    Am J Physiol; 1997 Apr; 272(4 Pt 2):F505-14. PubMed ID: 9140052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture.
    Dantzler WH; Pannabecker TL; Layton AT; Layton HE
    Acta Physiol (Oxf); 2011 Jul; 202(3):361-78. PubMed ID: 21054810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla.
    Layton AT; Gilbert RL; Pannabecker TL
    Am J Physiol Renal Physiol; 2012 Apr; 302(7):F830-9. PubMed ID: 22160770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Countercurrent exchange in the renal medulla.
    Pallone TL; Turner MR; Edwards A; Jamison RL
    Am J Physiol Regul Integr Comp Physiol; 2003 May; 284(5):R1153-75. PubMed ID: 12676741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.