These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20392930)

  • 1. Functional characterization of mouse sodium/glucose transporter type 3b.
    Aljure O; Díez-Sampedro A
    Am J Physiol Cell Physiol; 2010 Jul; 299(1):C58-65. PubMed ID: 20392930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse SGLT3a generates proton-activated currents but does not transport sugar.
    Barcelona S; Menegaz D; Díez-Sampedro A
    Am J Physiol Cell Physiol; 2012 Apr; 302(8):C1073-82. PubMed ID: 22301059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar binding residue affects apparent Na+ affinity and transport stoichiometry in mouse sodium/glucose cotransporter type 3B.
    Díez-Sampedro A; Barcelona S
    J Biol Chem; 2011 Mar; 286(10):7975-7982. PubMed ID: 21187287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single amino acid change converts the sugar sensor SGLT3 into a sugar transporter.
    Bianchi L; Díez-Sampedro A
    PLoS One; 2010 Apr; 5(4):e10241. PubMed ID: 20421923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of a triplet deletion in the gene encoding the sodium glucose transporter 3, a potential risk factor for ADHD.
    Schäfer N; Friedrich M; Jørgensen ME; Kollert S; Koepsell H; Wischmeyer E; Lesch KP; Geiger D; Döring F
    PLoS One; 2018; 13(10):e0205109. PubMed ID: 30286162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imino sugars are potent agonists of the human glucose sensor SGLT3.
    Voss AA; Díez-Sampedro A; Hirayama BA; Loo DD; Wright EM
    Mol Pharmacol; 2007 Feb; 71(2):628-34. PubMed ID: 17110502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Modified Tripeptide Motif of RS1 (
    Schäfer N; Rikkala PR; Veyhl-Wichmann M; Keller T; Jurowich CF; Geiger D; Koepsell H
    Mol Pharmacol; 2019 Jan; 95(1):82-96. PubMed ID: 30355744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational dynamics of hSGLT1 during Na+/glucose cotransport.
    Loo DD; Hirayama BA; Karakossian MH; Meinild AK; Wright EM
    J Gen Physiol; 2006 Dec; 128(6):701-20. PubMed ID: 17130520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2.
    Mackenzie B; Loo DD; Panayotova-Heiermann M; Wright EM
    J Biol Chem; 1996 Dec; 271(51):32678-83. PubMed ID: 8955098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the transport activity of SGLT2/MAP17, the renal low-affinity Na
    Coady MJ; Wallendorff B; Lapointe JY
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F467-F474. PubMed ID: 28592437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel SGLT is expressed in the human kidney.
    Kothinti RK; Blodgett AB; North PE; Roman RJ; Tabatabai NM
    Eur J Pharmacol; 2012 Sep; 690(1-3):77-83. PubMed ID: 22766068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein.
    Panayotova-Heiermann M; Loo DD; Kong CT; Lever JE; Wright EM
    J Biol Chem; 1996 Apr; 271(17):10029-34. PubMed ID: 8626557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-independent low-affinity D-glucose transport by human sodium/D-glucose cotransporter 1: critical role of tryptophan 561.
    Kumar A; Tyagi NK; Goyal P; Pandey D; Siess W; Kinne RK
    Biochemistry; 2007 Mar; 46(10):2758-66. PubMed ID: 17288452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive water and ion transport by cotransporters.
    Loo DD; Hirayama BA; Meinild AK; Chandy G; Zeuthen T; Wright EM
    J Physiol; 1999 Jul; 518(Pt 1):195-202. PubMed ID: 10373701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protons drive sugar transport through the Na+/glucose cotransporter (SGLT1).
    Hirayama BA; Loo DD; Wright EM
    J Biol Chem; 1994 Aug; 269(34):21407-10. PubMed ID: 8063771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Active' sugar transport in eukaryotes.
    Wright EM; Loo DD; Panayotova-Heiermann M; Lostao MP; Hirayama BH; Mackenzie B; Boorer K; Zampighi G
    J Exp Biol; 1994 Nov; 196():197-212. PubMed ID: 7823022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-to-sugar stoichiometry of SGLT3.
    Díez-Sampedro A; Eskandari S; Wright EM; Hirayama BA
    Am J Physiol Renal Physiol; 2001 Feb; 280(2):F278-82. PubMed ID: 11208603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional studies of a chimeric protein containing portions of the Na(+)/glucose and Na(+)/myo-inositol cotransporters.
    Coady MJ; Jalal F; Bissonnette P; Cartier M; Wallendorff B; Lemay G; Lapointe J
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):139-50. PubMed ID: 10825438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium/D-glucose cotransporter charge movements involve polar residues.
    Panayotova-Heiermann M; Loo DD; Lostao MP; Wright EM
    J Biol Chem; 1994 Aug; 269(33):21016-20. PubMed ID: 8063719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the reverse mode of the Na+/glucose cotransporter.
    Eskandari S; Wright EM; Loo DD
    J Membr Biol; 2005 Mar; 204(1):23-32. PubMed ID: 16007500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.