These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 20393063)
1. The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3-/- super-smeller mice. Lu S; Das P; Fadool DA; Kaczmarek LK J Neurophysiol; 2010 Jun; 103(6):3311-9. PubMed ID: 20393063 [TBL] [Abstract][Full Text] [Related]
3. Identity, expression and functional role of the sodium-activated potassium current in vestibular ganglion afferent neurons. Cervantes B; Vega R; Limón A; Soto E Neuroscience; 2013 Jun; 240():163-75. PubMed ID: 23466807 [TBL] [Abstract][Full Text] [Related]
4. An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na Zhang Y; Ni W; Horwich AL; Kaczmarek LK J Neurosci; 2017 Feb; 37(8):2258-2265. PubMed ID: 28119399 [TBL] [Abstract][Full Text] [Related]
5. Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3. Fadool DA; Tucker K; Phillips JJ; Simmen JA J Neurophysiol; 2000 Apr; 83(4):2332-48. PubMed ID: 10758137 [TBL] [Abstract][Full Text] [Related]
6. Na+-activated K+ channels express a large delayed outward current in neurons during normal physiology. Budelli G; Hage TA; Wei A; Rojas P; Jong YJ; O'Malley K; Salkoff L Nat Neurosci; 2009 Jun; 12(6):745-50. PubMed ID: 19412167 [TBL] [Abstract][Full Text] [Related]
7. The incretin hormone glucagon-like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage-dependent potassium channel. Thiebaud N; Llewellyn-Smith IJ; Gribble F; Reimann F; Trapp S; Fadool DA J Physiol; 2016 May; 594(10):2607-28. PubMed ID: 26931093 [TBL] [Abstract][Full Text] [Related]
9. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation. Brown MR; Kronengold J; Gazula VR; Spilianakis CG; Flavell RA; von Hehn CA; Bhattacharjee A; Kaczmarek LK J Physiol; 2008 Nov; 586(21):5161-79. PubMed ID: 18787033 [TBL] [Abstract][Full Text] [Related]
10. Slack and Slick KNa channels are required for the depolarizing afterpotential of acutely isolated, medium diameter rat dorsal root ganglion neurons. Gao SB; Wu Y; Lü CX; Guo ZH; Li CH; Ding JP Acta Pharmacol Sin; 2008 Aug; 29(8):899-905. PubMed ID: 18664322 [TBL] [Abstract][Full Text] [Related]
11. Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel. Tucker K; Cho S; Thiebaud N; Henderson MX; Fadool DA J Physiol; 2013 May; 591(10):2541-61. PubMed ID: 23478133 [TBL] [Abstract][Full Text] [Related]
12. Predominant expression of Kv1.3 voltage-gated K+ channel subunit in rat prostate cancer cell lines: electrophysiological, pharmacological and molecular characterisation. Fraser SP; Grimes JA; Diss JK; Stewart D; Dolly JO; Djamgoz MB Pflugers Arch; 2003 Aug; 446(5):559-71. PubMed ID: 12838421 [TBL] [Abstract][Full Text] [Related]
13. Expression of voltage-dependent K(+) channel genes in mesenteric artery smooth muscle cells. Xu C; Lu Y; Tang G; Wang R Am J Physiol; 1999 Nov; 277(5):G1055-63. PubMed ID: 10564112 [TBL] [Abstract][Full Text] [Related]
14. Neurotrophin modulation of voltage-gated potassium channels in rat through TrkB receptors is time and sensory experience dependent. Tucker K; Fadool DA J Physiol; 2002 Jul; 542(Pt 2):413-29. PubMed ID: 12122142 [TBL] [Abstract][Full Text] [Related]
15. Expression of Kv1 potassium channels in mouse hippocampal primary cultures: development and activity-dependent regulation. Grosse G; Draguhn A; Höhne L; Tapp R; Veh RW; Ahnert-Hilger G J Neurosci; 2000 Mar; 20(5):1869-82. PubMed ID: 10684888 [TBL] [Abstract][Full Text] [Related]
16. Kv1.3 channels regulate synaptic transmission in the nucleus of solitary tract. Ramirez-Navarro A; Glazebrook PA; Kane-Sutton M; Padro C; Kline DD; Kunze DL J Neurophysiol; 2011 Jun; 105(6):2772-80. PubMed ID: 21430270 [TBL] [Abstract][Full Text] [Related]
17. Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Li GR; Sun H; Deng X; Lau CP Stem Cells; 2005 Mar; 23(3):371-82. PubMed ID: 15749932 [TBL] [Abstract][Full Text] [Related]
18. Sodium-activated potassium channels are functionally coupled to persistent sodium currents. Hage TA; Salkoff L J Neurosci; 2012 Feb; 32(8):2714-21. PubMed ID: 22357855 [TBL] [Abstract][Full Text] [Related]
19. Electrophysiological and behavioral phenotype of insulin receptor defective mice. Das P; Parsons AD; Scarborough J; Hoffman J; Wilson J; Thompson RN; Overton JM; Fadool DA Physiol Behav; 2005 Oct; 86(3):287-96. PubMed ID: 16176826 [TBL] [Abstract][Full Text] [Related]
20. Electrophysiological characterization of Grueneberg ganglion olfactory neurons: spontaneous firing, sodium conductance, and hyperpolarization-activated currents. Liu CY; Xiao C; Fraser SE; Lester HA; Koos DS J Neurophysiol; 2012 Sep; 108(5):1318-34. PubMed ID: 22649209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]