BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

619 related articles for article (PubMed ID: 20393194)

  • 21. K(+) efflux through two-pore domain K(+) channels is required for mouse embryonic development.
    Hur CG; Kim EJ; Cho SK; Cho YW; Yoon SY; Tak HM; Kim CW; Choe C; Han J; Kang D
    Reproduction; 2012 May; 143(5):625-36. PubMed ID: 22419831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Constitutive inactivation of the hKv1.5 mutant channel, H463G, in K+-free solutions at physiological pH.
    Zhang S; Eduljee C; Kwan DC; Kehl SJ; Fedida D
    Cell Biochem Biophys; 2005; 43(2):221-30. PubMed ID: 16049347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of TASK and TREK, two-pore domain K+ channels, in human myometrium.
    Bai X; Bugg GJ; Greenwood SL; Glazier JD; Sibley CP; Baker PN; Taggart MJ; Fyfe GK
    Reproduction; 2005 Apr; 129(4):525-30. PubMed ID: 15798028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials.
    Perez MF; White FJ; Hu XT
    J Neurophysiol; 2006 Nov; 96(5):2217-28. PubMed ID: 16885524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons.
    Chen WC; Davis RL
    Hear Res; 2006 Dec; 222(1-2):89-99. PubMed ID: 17079103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inwardly rectifying potassium channels: their structure, function, and physiological roles.
    Hibino H; Inanobe A; Furutani K; Murakami S; Findlay I; Kurachi Y
    Physiol Rev; 2010 Jan; 90(1):291-366. PubMed ID: 20086079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic lentiviral expression of inwardly rectifying K+ channels (Kir2.1) reduces neuronal activity and downregulates voltage-gated potassium currents in hippocampus.
    Okada M; Matsuda H
    Neuroscience; 2008 Oct; 156(2):289-97. PubMed ID: 18713648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of leak potassium channels in pain signaling.
    Li XY; Toyoda H
    Brain Res Bull; 2015 Oct; 119(Pt A):73-9. PubMed ID: 26321392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular and functional properties of two-pore-domain potassium channels.
    Lesage F; Lazdunski M
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F793-801. PubMed ID: 11053038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Research into the therapeutic roles of two-pore-domain potassium channels.
    Es-Salah-Lamoureux Z; Steele DF; Fedida D
    Trends Pharmacol Sci; 2010 Dec; 31(12):587-95. PubMed ID: 20951446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and functional characterization of zebrafish K(2P)10.1 (TREK2) two-pore-domain K(+) channels.
    Gierten J; Hassel D; Schweizer PA; Becker R; Katus HA; Thomas D
    Biochim Biophys Acta; 2012 Jan; 1818(1):33-41. PubMed ID: 21963410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact.
    Bayliss DA; Barrett PQ
    Trends Pharmacol Sci; 2008 Nov; 29(11):566-75. PubMed ID: 18823665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.
    Ma L; Zhang X; Chen H
    Sci Signal; 2011 Jun; 4(176):ra37. PubMed ID: 21653227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatty acid-sensitive two-pore domain K+ channels.
    Kim D
    Trends Pharmacol Sci; 2003 Dec; 24(12):648-54. PubMed ID: 14654306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Potassium channels in glial cells].
    Horio Y; Kurachi Y
    Nihon Yakurigaku Zasshi; 1997 Mar; 109(3):103-10. PubMed ID: 9108558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of two-pore-domain potassium channels in the adult rat vestibular periphery.
    Popper P; Winkler J; Erbe CB; Lerch-Gaggl A; Siebeneich W; Wackym PA
    Hear Res; 2008 Dec; 246(1-2):1-8. PubMed ID: 18838117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K₂P) from a marine sponge.
    Wells GD; Tang QY; Heler R; Tompkins-MacDonald GJ; Pritchard EN; Leys SP; Logothetis DE; Boland LM
    J Exp Biol; 2012 Jul; 215(Pt 14):2435-44. PubMed ID: 22723483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels.
    Lotshaw DP
    Cell Biochem Biophys; 2007; 47(2):209-56. PubMed ID: 17652773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias.
    Decher N; Kiper AK; Rolfes C; Schulze-Bahr E; Rinné S
    Pflugers Arch; 2015 May; 467(5):1055-67. PubMed ID: 25404566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-Pore Domain Potassium Channel in Neurological Disorders.
    Aggarwal P; Singh S; Ravichandiran V
    J Membr Biol; 2021 Aug; 254(4):367-380. PubMed ID: 34169340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.